Section3.8-Higher Direct Image Of Sheaves .pdf

Section3.8-Higher Direct Image Of Sheaves .pdf

ID:34749488

大小:381.53 KB

页数:24页

时间:2019-03-10

Section3.8-Higher Direct Image Of Sheaves .pdf_第1页
Section3.8-Higher Direct Image Of Sheaves .pdf_第2页
Section3.8-Higher Direct Image Of Sheaves .pdf_第3页
Section3.8-Higher Direct Image Of Sheaves .pdf_第4页
Section3.8-Higher Direct Image Of Sheaves .pdf_第5页
资源描述:

《Section3.8-Higher Direct Image Of Sheaves .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Section3.8-HigherDirectImagesofSheavesDanielMurfetOctober5,2006InthisnotewestudythehigherdirectimagefunctorsRif(−)andthehighercoinverseimage∗functorsRif!(−)whichwillplayaroleinourstudyofSerreduality.ThemaintheoremistheproofthatifFisquasi-coherentthensoisRif(F),whichweprovefirstfornoeth

2、erianschemes∗andthenmoregenerallyforquasi-compactquasi-separatedschemes.MostproofsarefromeitherHartshorne’sbook[1]orKempf’spaper[2],withsomeelaborations.Contents1Definition12ModuleStructure33DirectImageandQuasi-coherence64HigherCoinverseImage85DirectImageandQuasi-coherence(Generalcase)

3、105.1LocalisationsofSheaves.................................105.2LocalisationasRestriction(Invertiblesheaves)....................135.3LocalisationasRestriction................................155.4TheProof.........................................176UniquenessofCohomology201DefinitionDefi

4、nition1.Letf:X−→Ybeacontinuousmapoftopologicalspaces.ThenwedefinethehigherdirectimagefunctorsRif:Ab(X)−→Ab(Y)tobetherightderivedfunctorsofthe∗directimagefunctorf∗fori≥0.Sincef∗isleftexactthereisacanonicalnaturalequivalenceR0f∼=f.ForanyshortexactsequenceofsheavesofabeliangroupsonX∗∗0−→F

5、0−→F−→F00−→0thereisalongexactsequenceofsheavesofabeliangroupsonY0/f0)/f(F)/f(F00)/R1f(F0)/···∗(F∗∗∗···/Rif∗(F00)/Ri+1f∗(F0)/Ri+1f∗(F)/Ri+1f∗(F00)/···Remark1.Ifthefunctorf∗:Ab(X)−→Ab(Y)isexact,thenfori>0thehigherdirectimagefunctorRifiszero.Inparticularthisisthecaseiffisaclosedembedding

6、(SGR,Definition17).∗Remark2.LetXbeatopologicalspace.In(COS,Section1.3)wedefinedforeveryi≥0anadditivefunctorHi(−):Ab(X)−→Ab(X)whichmapsasheafofabeliangroupsFtothepresheafofcohomologydefinedbyΓ(U,Hi(F))=Hi(U,F).HereHi(U,−)denotestheith1rightderivedfunctorofΓ(U,−):Ab(X)−→Ab.By(COS,Lemma12)t

7、hegroupHi(U,F)iscanonicallyisomorphictotheusualcohomologygroupHi(U,F

8、)ofthesheafF

9、.UUProposition1.Letf:X−→YbeacontinuousmapofspacesandFasheafofabeliangroupsonX.Foreveryi≥0thereisacanonicalisomorphismofsheavesofabeliangroupsonYnaturalinFν:afHi(F)−→Rif(F)∗∗Inotherwords,Rif(F)isthesheafifi

10、catio

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。