欢迎来到天天文库
浏览记录
ID:34749488
大小:381.53 KB
页数:24页
时间:2019-03-10
《Section3.8-Higher Direct Image Of Sheaves .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、Section3.8-HigherDirectImagesofSheavesDanielMurfetOctober5,2006InthisnotewestudythehigherdirectimagefunctorsRif(−)andthehighercoinverseimage∗functorsRif!(−)whichwillplayaroleinourstudyofSerreduality.ThemaintheoremistheproofthatifFisquasi-coherentthensoisRif(F),whichweprovefirstfornoeth
2、erianschemes∗andthenmoregenerallyforquasi-compactquasi-separatedschemes.MostproofsarefromeitherHartshorne’sbook[1]orKempf’spaper[2],withsomeelaborations.Contents1Definition12ModuleStructure33DirectImageandQuasi-coherence64HigherCoinverseImage85DirectImageandQuasi-coherence(Generalcase)
3、105.1LocalisationsofSheaves.................................105.2LocalisationasRestriction(Invertiblesheaves)....................135.3LocalisationasRestriction................................155.4TheProof.........................................176UniquenessofCohomology201DefinitionDefi
4、nition1.Letf:X−→Ybeacontinuousmapoftopologicalspaces.ThenwedefinethehigherdirectimagefunctorsRif:Ab(X)−→Ab(Y)tobetherightderivedfunctorsofthe∗directimagefunctorf∗fori≥0.Sincef∗isleftexactthereisacanonicalnaturalequivalenceR0f∼=f.ForanyshortexactsequenceofsheavesofabeliangroupsonX∗∗0−→F
5、0−→F−→F00−→0thereisalongexactsequenceofsheavesofabeliangroupsonY0/f0)/f(F)/f(F00)/R1f(F0)/···∗(F∗∗∗···/Rif∗(F00)/Ri+1f∗(F0)/Ri+1f∗(F)/Ri+1f∗(F00)/···Remark1.Ifthefunctorf∗:Ab(X)−→Ab(Y)isexact,thenfori>0thehigherdirectimagefunctorRifiszero.Inparticularthisisthecaseiffisaclosedembedding
6、(SGR,Definition17).∗Remark2.LetXbeatopologicalspace.In(COS,Section1.3)wedefinedforeveryi≥0anadditivefunctorHi(−):Ab(X)−→Ab(X)whichmapsasheafofabeliangroupsFtothepresheafofcohomologydefinedbyΓ(U,Hi(F))=Hi(U,F).HereHi(U,−)denotestheith1rightderivedfunctorofΓ(U,−):Ab(X)−→Ab.By(COS,Lemma12)t
7、hegroupHi(U,F)iscanonicallyisomorphictotheusualcohomologygroupHi(U,F
8、)ofthesheafF
9、.UUProposition1.Letf:X−→YbeacontinuousmapofspacesandFasheafofabeliangroupsonX.Foreveryi≥0thereisacanonicalisomorphismofsheavesofabeliangroupsonYnaturalinFν:afHi(F)−→Rif(F)∗∗Inotherwords,Rif(F)isthesheafifi
10、catio
此文档下载收益归作者所有