欢迎来到天天文库
浏览记录
ID:34747282
大小:175.58 KB
页数:10页
时间:2019-03-10
《CONGRUENCES AND LEHMER’S PROBLEM1.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、July31,200814:36WSPC/203-IJNT00154InternationalJournalofNumberTheoryVol.4,No.4(2008)587–596cWorldScientificPublishingCompanyCONGRUENCESANDLEHMER’SPROBLEMNICOLAECIPRIANBONCIOCATInstituteofMathematicsoftheRomanianAcademyP.O.Box1-764,Bucharest014700,RomaniaNicolae
2、.Bonciocat@imar.roReceived9October2006Accepted19April2007WeobtainexplicitlowerboundsfortheMahlermeasurefornonreciprocalpolynomialswithintegercoefficientssatisfyingcertaincongruences.Keywords:Mahlermeasure;nonreciprocalpolynomial.MathematicsSubjclassClassification2
3、000:11R09,11C08,11Y401.IntroductionTheMahlermeasureofapolynomialnnf(z)=azi=a(z−α)inii=0i=1isdefinedbynM(f)=
4、an
5、max{1,
6、αi
7、}.i=1Asweknow,M(f)=M(f∗),wheref∗(z)=znf(1/z)isthereciprocaloff,andapolynomialissaidtobereciprocaliff(z)=±f∗(z).ByaclassicalresultofKro-nec
8、ker,M(f)=1ifandonlyiff(z)isaproductofcyclotomicpolynomialsandapoweroftheindeterminatez.Along-standingopenproblemduetoLehmer[5]askswhetherthereisagapbetween1andthenextlargestalgebraicintegerwithrespecttotheMahlermeasure,orequivalently,ifforany>0thereexistsapoly
9、nomialfwithintegercoefficientssuchthat110、andZassen-hausin[8].Theyconjecturedthatthereexistsapositiveconstantcsuchthatevery587July31,200814:36WSPC/203-IJNT00154588N.C.Bonciocatmonic,irreduciblepolynomialofdegreenhasarootαsatisfying11、α12、>1+c/n,andonemayeasilycheckthatsolvingLehmer’sproblemresolvesthisprob13、lemaswell.Smyth[9]answeredLehmer’squestionforthecaseofnonreciprocalpolynomialsbyprovingthatM(f)≥M(z3−z−1)=1.324717...foranynonreciprocalpolynomialfwithf(0)=0.Schinzel[6]provedthatiffisamonic,integerpolynomialofdegreedsatisfyingf(0)=±1andf(±1)=0,andallrootsoff14、arereal,thenM(f)≥γd/2,√whereγ=(1+5)/2,thegoldenratio.AnotherelegantresultwasprovedbyBor-niwein,HareandMossinghoff[3]fornonreciprocalpolynomialsf(z)=i=0aizsat-isfyingf≡±f∗mod
10、andZassen-hausin[8].Theyconjecturedthatthereexistsapositiveconstantcsuchthatevery587July31,200814:36WSPC/203-IJNT00154588N.C.Bonciocatmonic,irreduciblepolynomialofdegreenhasarootαsatisfying
11、α
12、>1+c/n,andonemayeasilycheckthatsolvingLehmer’sproblemresolvesthisprob
13、lemaswell.Smyth[9]answeredLehmer’squestionforthecaseofnonreciprocalpolynomialsbyprovingthatM(f)≥M(z3−z−1)=1.324717...foranynonreciprocalpolynomialfwithf(0)=0.Schinzel[6]provedthatiffisamonic,integerpolynomialofdegreedsatisfyingf(0)=±1andf(±1)=0,andallrootsoff
14、arereal,thenM(f)≥γd/2,√whereγ=(1+5)/2,thegoldenratio.AnotherelegantresultwasprovedbyBor-niwein,HareandMossinghoff[3]fornonreciprocalpolynomialsf(z)=i=0aizsat-isfyingf≡±f∗mod
此文档下载收益归作者所有