CONGRUENCES AND LEHMER’S PROBLEM1.pdf

CONGRUENCES AND LEHMER’S PROBLEM1.pdf

ID:34747282

大小:175.58 KB

页数:10页

时间:2019-03-10

CONGRUENCES AND LEHMER’S PROBLEM1.pdf_第1页
CONGRUENCES AND LEHMER’S PROBLEM1.pdf_第2页
CONGRUENCES AND LEHMER’S PROBLEM1.pdf_第3页
CONGRUENCES AND LEHMER’S PROBLEM1.pdf_第4页
CONGRUENCES AND LEHMER’S PROBLEM1.pdf_第5页
资源描述:

《CONGRUENCES AND LEHMER’S PROBLEM1.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、July31,200814:36WSPC/203-IJNT00154InternationalJournalofNumberTheoryVol.4,No.4(2008)587–596cWorldScientificPublishingCompanyCONGRUENCESANDLEHMER’SPROBLEMNICOLAECIPRIANBONCIOCATInstituteofMathematicsoftheRomanianAcademyP.O.Box1-764,Bucharest014700,RomaniaNicolae

2、.Bonciocat@imar.roReceived9October2006Accepted19April2007WeobtainexplicitlowerboundsfortheMahlermeasurefornonreciprocalpolynomialswithintegercoefficientssatisfyingcertaincongruences.Keywords:Mahlermeasure;nonreciprocalpolynomial.MathematicsSubjclassClassification2

3、000:11R09,11C08,11Y401.IntroductionTheMahlermeasureofapolynomialnnf(z)=azi=a(z−α)inii=0i=1isdefinedbynM(f)=

4、an

5、max{1,

6、αi

7、}.i=1Asweknow,M(f)=M(f∗),wheref∗(z)=znf(1/z)isthereciprocaloff,andapolynomialissaidtobereciprocaliff(z)=±f∗(z).ByaclassicalresultofKro-nec

8、ker,M(f)=1ifandonlyiff(z)isaproductofcyclotomicpolynomialsandapoweroftheindeterminatez.Along-standingopenproblemduetoLehmer[5]askswhetherthereisagapbetween1andthenextlargestalgebraicintegerwithrespecttotheMahlermeasure,orequivalently,ifforany>0thereexistsapoly

9、nomialfwithintegercoefficientssuchthat1

10、andZassen-hausin[8].Theyconjecturedthatthereexistsapositiveconstantcsuchthatevery587July31,200814:36WSPC/203-IJNT00154588N.C.Bonciocatmonic,irreduciblepolynomialofdegreenhasarootαsatisfying

11、α

12、>1+c/n,andonemayeasilycheckthatsolvingLehmer’sproblemresolvesthisprob

13、lemaswell.Smyth[9]answeredLehmer’squestionforthecaseofnonreciprocalpolynomialsbyprovingthatM(f)≥M(z3−z−1)=1.324717...foranynonreciprocalpolynomialfwithf(0)=0.Schinzel[6]provedthatiffisamonic,integerpolynomialofdegreedsatisfyingf(0)=±1andf(±1)=0,andallrootsoff

14、arereal,thenM(f)≥γd/2,√whereγ=(1+5)/2,thegoldenratio.AnotherelegantresultwasprovedbyBor-niwein,HareandMossinghoff[3]fornonreciprocalpolynomialsf(z)=i=0aizsat-isfyingf≡±f∗mod

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。