古典概型及随机数的产生(教师教学案)

古典概型及随机数的产生(教师教学案)

ID:34714874

大小:121.50 KB

页数:10页

时间:2019-03-10

古典概型及随机数的产生(教师教学案)_第1页
古典概型及随机数的产生(教师教学案)_第2页
古典概型及随机数的产生(教师教学案)_第3页
古典概型及随机数的产生(教师教学案)_第4页
古典概型及随机数的产生(教师教学案)_第5页
资源描述:

《古典概型及随机数的产生(教师教学案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、3.2.2古典概型及随机数的产生一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P(A)=(3)了解随机数的概念;(4)利用计算机产生随机数,并能直接统计出频数与频率。二、重点与难点:1、正确理解掌握古典概型及其概率公式;2、正确理解随机数的概念,并能应用计算机产生随机数.三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的

2、良好习惯.四、教学过程:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;(2)古典概型的概率计算公式:P(A)=.3、例题分析:例1掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。分析:掷骰子

3、有6个基本事件,具有有限性和等可能性,因此是古典概型。解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3所以,P(A)====0.5例2从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1

4、),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而,P(A)==。例3现有一批产品共有10件,其中8件为正品,2件为次品:17(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为返回抽样;(2)为不返回抽样.解:(1)

5、有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)==0.512.(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336,所以P(B)=≈0.467.解法2:可以看作不放

6、回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)=≈0.467.例4利用计算器产生10个1~100之间的取整数值的随机数。解:具体操作如下:键入PRBRANDRANDISTATDECENTERRANDI(1,100)STATDEGENTERRAND(

7、1,100)3.STATDEC反复操作10次即可得之例5某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数。我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%。因为是投篮

8、三次,所以每三个随机数作为一组。17例如:产生20组随机数:812,932,569,683,271,989,730,537,925,907,113,966,191,431,257,393,027,556.这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。