欢迎来到天天文库
浏览记录
ID:34693243
大小:2.36 MB
页数:23页
时间:2019-03-09
《全国高考数学压轴题突破训练——圆锥曲线(含详解)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高考数学压轴题突破训练:圆锥曲线ADMBNl2l11.如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D位于点A右侧),且
2、AB
3、=4,
4、AD
5、=1,M是该平面上的一个动点,M在l1上的射影点是N,且
6、BN
7、=2
8、DM
9、.矚慫润厲钐瘗睞枥庑赖。(Ⅰ)建立适当的坐标系,求动点M的轨迹C的方程.(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:求点G的横坐标的取值范围.2.设椭圆的中心是坐标原点,焦点在轴上,离心率,
10、已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3.已知椭圆的一条准线方程是其左、右顶点分别是A、B;双曲线的一条渐近线方程为3x-5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若.求证:聞創沟燴鐺險爱氇谴净。4.椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为a.残骛楼諍锩瀨濟溆塹籟。(1)用
11、半焦距c表示椭圆的方程及tg;(2)若212、取值范围7.设,为直角坐标平面内x轴.y轴正方向上的单位向量,若,且(Ⅰ)求动点M(x,y)的轨迹C的方程;(Ⅱ)设曲线C上两点A.B,满足(1)直线AB过点(0,3),(2)若,则OAPB为矩形,试求AB方程.彈贸摄尔霁毙攬砖卤庑。8.已知抛物线C:的焦点为原点,C的准线与直线的交点M在x轴上,与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).(Ⅰ)求抛物线C的方程;(Ⅱ)求实数p的取值范围;(Ⅲ)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.9.13、如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且14、CD15、=16、AA117、.椭圆的一条弦AC交双曲线于E,设,当时,求双曲线的离心率e的取值范围.謀荞抟箧飆鐸怼类蒋薔。10.已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;若角A为,AD垂直BC于D,试求点D的轨迹方程.11.如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.18、(1)设点分有向线段所成的比为,证明:;(2)设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.12.已知动点P(p,-1),Q(p,),过Q作斜率为的直线l,PQ中点M的轨迹为曲线C.(1)证明:l经过一个定点而且与曲线C一定有两个公共点;(2)若(1)中的其中一个公共点为A,证明:AP是曲线C的切线;(3)设直线AP的倾斜角为,AP与l的夹角为,证明:或是定值.2313.在平面直角坐标系内有两个定点和动点P,坐标分别为、,动点满足,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,19、直线与曲线交于A、B两点,O是坐标原点,△ABO的面积为,厦礴恳蹒骈時盡继價骚。(1)求曲线C的方程;(2)求的值。14.已知双曲线的左右两个焦点分别为,点P在双曲线右支上.(Ⅰ)若当点P的坐标为时,,求双曲线的方程;(Ⅱ)若,求双曲线离心率的最值,并写出此时双曲线的渐进线方程.15.若F、F为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足;.(1)求该双曲线的离心率;(2)若该双曲线过N(2,),求双曲线的方程;(3)若过N(2,)的双曲线的虚轴端点分别为B、B(B在y20、轴正半轴上),点A、B在双曲线上,且时,直线AB的方程.茕桢广鳓鯡选块网羈泪。16.以O为原点,所在直线为轴,建立如所示的坐标系。设,点F的坐标为,,点G的坐标为。(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。17.已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径C
12、取值范围7.设,为直角坐标平面内x轴.y轴正方向上的单位向量,若,且(Ⅰ)求动点M(x,y)的轨迹C的方程;(Ⅱ)设曲线C上两点A.B,满足(1)直线AB过点(0,3),(2)若,则OAPB为矩形,试求AB方程.彈贸摄尔霁毙攬砖卤庑。8.已知抛物线C:的焦点为原点,C的准线与直线的交点M在x轴上,与C交于不同的两点A、B,线段AB的垂直平分线交x轴于点N(p,0).(Ⅰ)求抛物线C的方程;(Ⅱ)求实数p的取值范围;(Ⅲ)若C的焦点和准线为椭圆Q的一个焦点和一条准线,试求Q的短轴的端点的轨迹方程.9.
13、如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且
14、CD
15、=
16、AA1
17、.椭圆的一条弦AC交双曲线于E,设,当时,求双曲线的离心率e的取值范围.謀荞抟箧飆鐸怼类蒋薔。10.已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;若角A为,AD垂直BC于D,试求点D的轨迹方程.11.如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.
18、(1)设点分有向线段所成的比为,证明:;(2)设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.12.已知动点P(p,-1),Q(p,),过Q作斜率为的直线l,PQ中点M的轨迹为曲线C.(1)证明:l经过一个定点而且与曲线C一定有两个公共点;(2)若(1)中的其中一个公共点为A,证明:AP是曲线C的切线;(3)设直线AP的倾斜角为,AP与l的夹角为,证明:或是定值.2313.在平面直角坐标系内有两个定点和动点P,坐标分别为、,动点满足,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,
19、直线与曲线交于A、B两点,O是坐标原点,△ABO的面积为,厦礴恳蹒骈時盡继價骚。(1)求曲线C的方程;(2)求的值。14.已知双曲线的左右两个焦点分别为,点P在双曲线右支上.(Ⅰ)若当点P的坐标为时,,求双曲线的方程;(Ⅱ)若,求双曲线离心率的最值,并写出此时双曲线的渐进线方程.15.若F、F为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足;.(1)求该双曲线的离心率;(2)若该双曲线过N(2,),求双曲线的方程;(3)若过N(2,)的双曲线的虚轴端点分别为B、B(B在y
20、轴正半轴上),点A、B在双曲线上,且时,直线AB的方程.茕桢广鳓鯡选块网羈泪。16.以O为原点,所在直线为轴,建立如所示的坐标系。设,点F的坐标为,,点G的坐标为。(1)求关于的函数的表达式,判断函数的单调性,并证明你的判断;(2)设ΔOFG的面积,若以O为中心,F为焦点的椭圆经过点G,求当取最小值时椭圆的方程;(3)在(2)的条件下,若点P的坐标为,C、D是椭圆上的两点,且,求实数的取值范围。17.已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径C
此文档下载收益归作者所有