全国高中数学复习专题座()关于求圆锥曲线方程的方法

全国高中数学复习专题座()关于求圆锥曲线方程的方法

ID:34689540

大小:887.50 KB

页数:8页

时间:2019-03-09

全国高中数学复习专题座()关于求圆锥曲线方程的方法_第1页
全国高中数学复习专题座()关于求圆锥曲线方程的方法_第2页
全国高中数学复习专题座()关于求圆锥曲线方程的方法_第3页
全国高中数学复习专题座()关于求圆锥曲线方程的方法_第4页
全国高中数学复习专题座()关于求圆锥曲线方程的方法_第5页
资源描述:

《全国高中数学复习专题座()关于求圆锥曲线方程的方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高中数学复习专题系列讲座        新疆奎屯市第一高级中学 王新敞题目高中数学复习专题讲座关于求圆锥曲线方程的方法高考要求求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法矚慫润厲钐瘗睞枥庑赖。重难点归纳一般求已知曲线类型的曲线方程问题,可采用“先定形,后定

2、式,再定量”的步骤定形——指的是二次曲线的焦点位置与对称轴的位置定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0)聞創沟燴鐺險爱氇谴净。定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小典型题例示范讲解例1某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′

3、=14m,CC′=18m,BB′=22m,塔高20m建立坐标系并写出该双曲线方程残骛楼諍锩瀨濟溆塹籟。命题意图本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力酽锕极額閉镇桧猪訣锥。知识依托待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积错解分析建立恰当的坐标系是解决本题的关键技巧与方法本题是待定系数法求曲线方程解如图,建立直角坐标系xOy,使AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴设双曲线方程为=1(a>0

4、,b>0),则a=AA′=7又设B(11,y1),C(9,x2)因为点B、C在双曲线上,所以有源头学子小屋http://www.xjktyg.com/wxc/ wxckt@126.com第8页 共8页 高中数学复习专题系列讲座        新疆奎屯市第一高级中学 王新敞由题意,知y2-y1=20,由以上三式得y1=-12,y2=8,b=7故双曲线方程为=1例2过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为的椭圆C相交于A、B两点,直线y=x过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线

5、l对称,试求直线l与椭圆C的方程彈贸摄尔霁毙攬砖卤庑。命题意图本题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,基础性强知识依托待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题错解分析不能恰当地利用离心率设出方程是学生容易犯的错误恰当地利用好对称问题是解决好本题的关键技巧与方法本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式解法二,用韦达定理謀荞抟箧飆鐸怼类蒋薔。解法一由e=,得,从而a2=2b2,c=b设椭圆方程为x2+2y

6、2=2b2,A(x1,y1),B(x2,y2)在椭圆上则x12+2y12=2b2,x22+2y22=2b2,两式相减得,(x12-x22)+2(y12-y22)=0,厦礴恳蹒骈時盡继價骚。设AB中点为(x0,y0),则kAB=-,又(x0,y0)在直线y=x上,y0=x0,于是-=-1,kAB=-1,设l的方程为y=-x+1茕桢广鳓鯡选块网羈泪。右焦点(b,0)关于l的对称点设为(x′,y′),源头学子小屋http://www.xjktyg.com/wxc/ wxckt@126.com第8页 共8页 高中数

7、学复习专题系列讲座        新疆奎屯市第一高级中学 王新敞由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=∴所求椭圆C的方程为=1,l的方程为y=-x+1解法二由e=,从而a2=2b2,c=b设椭圆C的方程为x2+2y2=2b2,l的方程为y=k(x-1),将l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,则x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-鹅娅尽損鹌惨歷茏鴛賴。直线ly=x过AB的中点(),则,解得k=0,或

8、k=-1若k=0,则l的方程为y=0,焦点F(c,0)关于直线l的对称点就是F点本身,不能在椭圆C上,所以k=0舍去,从而k=-1,直线l的方程为y=-(x-1),即y=-x+1,以下同解法一籟丛妈羥为贍偾蛏练淨。例3如图,已知△P1OP2的面积为,P为线段P1P2的一个三等分点,求以直线OP1、OP2为渐近线且过点P的离心率为的双曲线方程預頌圣鉉儐歲龈讶骅籴。命题意图本题考查待定系数法求双曲线的方程以及综合运用

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。