免费下载全国高考数学难点突破难点函数中的综合问题

免费下载全国高考数学难点突破难点函数中的综合问题

ID:34682717

大小:377.50 KB

页数:4页

时间:2019-03-09

免费下载全国高考数学难点突破难点函数中的综合问题_第1页
免费下载全国高考数学难点突破难点函数中的综合问题_第2页
免费下载全国高考数学难点突破难点函数中的综合问题_第3页
免费下载全国高考数学难点突破难点函数中的综合问题_第4页
资源描述:

《免费下载全国高考数学难点突破难点函数中的综合问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、难点11函数中的综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力.●难点磁场(★★)设函数f(x)的定义域为R,对任意实数x、y都有f(x+y)=f(x)+f(y),当x>0时f(x)<0且f(3)=-4.矚慫润厲钐瘗睞枥庑赖。(1)求证:f(x)为奇函数;(2)在区间[-9,9]上,求f(x)的最值.●案例探究[例1]设f(x)是定义在R上的偶

2、函数,其图象关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.(1)求f()、f();(2)证明f(x)是周期函数;(3)记an=f(n+),求聞創沟燴鐺險爱氇谴净。命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力.残骛楼諍锩瀨濟溆塹籟。知识依托:认真分析处理好各知识的相互联系,抓住条件f(x1+x2)=f(x1)·f(x2)找到问题的突破口.错解分析:不会利用f(x1+x2)=f(x1)·

3、f(x2)进行合理变形.技巧与方法:由f(x1+x2)=f(x1)·f(x2)变形为是解决问题的关键.⑴解:因为对x1,x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),所以f(x)=≥0,x∈[0,1]酽锕极額閉镇桧猪訣锥。又因为f(1)=f(+)=f()·f()=[f()]2f()=f(+)=f()·f()=[f()]2又f(1)=a>0∴f()=a,f()=a彈贸摄尔霁毙攬砖卤庑。(2)证明:依题意设y=f(x)关于直线x=1对称,故f(x)=f(1+1-x),即f(x)=f(2-x),x∈

4、R.又由f(x)是偶函数知f(-x)=f(x),x∈R謀荞抟箧飆鐸怼类蒋薔。∴f(-x)=f(2-x),x∈R.将上式中-x以x代换得f(x)=f(x+2),这表明f(x)是R上的周期函数,且2是它的一个周期.厦礴恳蹒骈時盡继價骚。(3)解:由(1)知f(x)≥0,x∈[0,1]∵f()=f(n·)=f(+(n-1))=f()·f((n-1)·)=……茕桢广鳓鯡选块网羈泪。=f()·f()·……·f()=[f()]n=a∴f()=a.又∵f(x)的一个周期是2∴f(2n+)=f(),因此an=a鹅娅尽損鹌惨歷

5、茏鴛賴。∴[例2]甲、乙两地相距S千米,汽车从甲地匀速驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v(km/h)的平方成正比,比例系数为b,固定部分为a元.(1)把全程运输成本y(元)表示为v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?籟丛妈羥为贍偾蛏练淨。命题意图:本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力.預頌圣鉉儐歲龈讶骅籴。知识

6、依托:运用建模、函数、数形结合、分类讨论等思想方法.错解分析:不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件.技巧与方法:四步法:(1)读题;(2)建模;(3)求解;(4)评价.渗釤呛俨匀谔鱉调硯錦。解法一:(1)依题意知,汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为y=a·+bv2·=S(+bv)铙誅卧泻噦圣骋贶頂廡。∴所求函数及其定义域为y=S(+bv),v∈(0,c.(2)依题意知,S、a、b、v均为正数∴S(+bv)≥2S①擁締凤袜备訊顎轮烂蔷。当且仅当=bv,即v=时,①式中

7、等号成立.若≤c则当v=时,有ymin;若>c,则当v∈(0,c时,有S(+bv)-S(+bc)=S[(-)+(bv-bc)]=(c-v)(a-bcv)贓熱俣阃歲匱阊邺镓騷。∵c-v≥0,且c>bc2,∴a-bcv≥a-bc2>0∴S(+bv)≥S(+bc),当且仅当v=c时等号成立,也即当v=c时,有ymin;坛摶乡囂忏蒌鍥铃氈淚。综上可知,为使全程运输成本y最小,当≤c时,行驶速度应为v=,当>c时行驶速度应为v=c.解法二:(1)同解法一.(2)∵函数y=x+(k>0),x∈(0,+∞),当x∈(0,)

8、时,y单调减小,当x∈(,+∞)时y单调增加,当x=时y取得最小值,而全程运输成本函数为y=Sb(v+),v∈(0,c.蜡變黲癟報伥铉锚鈰赘。∴当≤c时,则当v=时,y最小,若>c时,则当v=c时,y最小.结论同上.●锦囊妙计在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用.综合问题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。