3、答案】C.xxx22【解析】Fxx()=−∫∫ftdt()tftdtFx(),2,′()=xftdt∫()000xFx′()2∫ftdt()fx()==0=′≠limlimlimf()00.32xx→→00xxxx→0(3)函数f()xy,=xy在()0,0点处()(A)不连续.(B)偏导数存在,但不可微.(C)连续但偏导数不存在.(D)可微.【答案】B.【解析】显然f()xy,在()0,0点处连续,且00−ffxy()0,0===lim0,()0,00,Δ→x0Δxf(ΔΔ−xyf,)()()0,0−⎡⎤⎣⎦fxy0,0Δ+xf(0,0
4、)ΔyΔΔxylim=lim≠0,()ΔΔ→xy,0(,0)Δ+Δxy22()ΔΔ→xy,0(,0)Δ+Δxy22针对性教学:一切以提高学生学习成绩为宗旨1ΔΔxyΔx21事实上,lim==lim≠0,()ΔΔ→xy,0(,0)Δ+Δxy22Δ→x02Δx22Δ=Δyx则f()xy,在()0,0点不可微,故选B.11(4)已知∫∫fxdx()==xfxdxD(),,{(xyxy)+≤1,x≥0,y≥0},则∫∫f(xdxdy)=()00D1(A)2.(B)1.(C)0.(D).2【答案】C.111−x11【解析】∫∫fxdxdy()==∫
5、000fxdx()∫dy∫(10−xfxdx)()=∫0fxdx()−∫0xfxdx()=,故选C.D2(5)设方阵A满足条件A−−=AEO2,则()(A)A可逆,AE+2不可逆.(B)A和AE+2都不可逆.(C)A不可逆,AE+2可逆.(D)A和AE+2都可逆.【答案】D.2AE−−1A−E【解析】因为A−−=AEO2,所以A()AE−=2E,即A⋅=E,所以A可逆,且A=.2222AE−3又A−−=AEO2,所以()AEAEAAEE+23()−=−−=64−,即()A+2EE=,所以AE+2可−4−13E−A逆,且()AE+=2,故选
6、D.4⎛⎞120⎜⎟(6)下列矩阵中与A=210合同的矩阵是()⎜⎟⎜⎟001⎝⎠⎛⎞1⎛⎞1⎛⎞1⎛⎞−1⎜⎟⎜⎟⎜⎟⎜⎟(A)1.(B)1.(C)−1.(D)−1.⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠1⎝⎠⎜⎟−1⎜⎟⎝⎠−1⎜⎟⎝⎠−1【答案】B.λ−−1202【解析】由于λλλEA−=−21−012=−()()λ−−=−+−λ3113()λ()λ()λ,故λ=1,λ=−1,12001λ−⎛⎞1TT⎜⎟λ=3.而A与B合同的充要条件为xAx和xBx具有相同的正、负惯性指数,故A与1合同,选3⎜⎟⎜⎟⎝⎠−1B.34(7)设X和Y是两个随机变量,
7、且PX{}≥≥=0,Y0,PX{}{}≥=≥=0PY0,设Z=max{XY,},则77针对性教学:一切以提高学生学习成绩为宗旨2PZ{≥=0}()516340(A).(B).(C).(D).749749【答案】A.43【解析】设AX=0{≥=},BY{≥0},则PAPB()=()==,,PAB()77又{Z≥=0m}{ax,0()XY≥=}ABU,5所以PZ{≥=0}PAPBPAB()()()+−=.7(8)若X和Y满足DXYDXY()()+=−,且DX()≠0,DY()≠0,则必有()(A)X与Y相互独立.(B)DXDY()⋅()=0.
8、(C)DXYDXDY()()=().(D)X和Y不相关.【答案】D.【解析】根据题设有DXYDXY()()+=−⇒++DXDY()()2,CovXYDXDY()=+−()()(2,CovXY)