欢迎来到天天文库
浏览记录
ID:34593889
大小:1.73 MB
页数:44页
时间:2019-03-08
《个性化微博信息流推荐技术-研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、个性化微博信息流推荐技术研究关键词:微博推荐;信息检索;主题模型;协同过滤;个性化;冷启动论文类型:应用研究-II-万方数据兰州交通大学硕士学位论文AbstractMillionsofpeopleturntomicrobloggingservicestogatherreal-timenewsoropinionaboutpeople,things,oreventsofinterest,becauseitisveryconvenientandfastforusers.Asmicroblogginggrowsinpopularity
2、inrecentyears,microbloggingservicesarebecomingthekeyroleofsocialnetworkstosupportinformationsharing.However,moreandmoreuserstodayarefacingthechallengeofinformationoverloading.So,howtorecommendtheinterestingandimportanttweetsforuseristhekeyissue.Themainchallengesofth
3、epersonalizedtweetsstreamrecommendationisthecontradictionbetweenthesmallsizeofthemicroblogmessagesandthesocialfeaturesofmicroblogsandthereforehowtodetectpersonalinterestexactlyisthekeyprobleminthisthesis.Mostofthecurrentresearchesonthepersonalizedtweetsstreamrecomme
4、ndationperformbadlybecauseofthelimitationsofmodelsresearchandthechallengesofmicroblogsdataitself.Inthisthesis,weintegratetheTF-IDF(termfrequency–inversedocumentfrequency)modelsofthesimilaritybetweenstreamsoftweetsandthesimilarityscoresbetweenstreamsoftweetsbasedonLD
5、A(LatentDirichletAllocation)modelstosolvethisproblem.Theresearchcontentsareasfollows:Firstly,anapproachbasedonTF-IDFisproposed.Inordertocapturepersonalinterests,theapproachimprovestheTF-IDFmodelbycombiningtheweightofsingletermsandpairsoftermsandevaluatesthesimilarit
6、ybetweenthesetofuser’stweetsandthestreamoftweetscomingtousersbasedontheideaofcollaborativefiltering.Moreover,themodelstudiesthecold-startproblemsandpersonalfeaturesofuserstooptimizethequeueofthetweetsreceivedbyusers.Secondly,thisthesisalsoborrowsthemachineryoflatent
7、variabletopicmodelslikethepopularunsupervisedmodelLDAwhichhavebeenappliedwidelytoproblemsintextmodeling.Thesemodelsdistillcollectionsoftextdocuments(tweets)intodistributionsofwordsthattendtoco-occurinsimilardocuments.Sotheapproachusestopicstocomputethesimilarityscor
8、esbetweenstreamsoftweets.Finally,thisthesiscombinestheimprovedmodelsbasedonTF-IDFandLDAmodelsforpersonalizedtweetsstreamrecommendation,and
此文档下载收益归作者所有