资源描述:
《动力灾害煤炭资源开采危险程度预测方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、山东科技大学硕士学位论文摘要AbstractCoalmine'sdynamicphenomenaisthephenomenathatthecoalorrockinthehigh-stressstatewhichhaveaccumulatedalargenumberofelasticenergy,suddenlydamage,fallorthrownout,andreleasealotofenergy.Thecoalisthemainenergyofourcountry,coalaccountformorethan70%intheenergystructure
2、.However,coalminedisastersoftenoccur,forexample,inFushun,Beijing,Datong,Zaozhuang,Xinwen,Kailuanandothercoalminesallhaverockburstphenomenon,andtherockbursthavecausedagreatharm.Incoalmines,coalandgasoutburstisevenmorefrequent,accordingtostatistics,there107coalmineshavecoalandgasoutb
3、urstdisasterinourcountry,thenumberofcoalandgasoutburstdisasteraccountfor35%inthetotalnumberoftheworld's,thecoalandgasoutbursthavecausedmanycasualtiesandeconomiclosses.Rockburstandcoalandgasoutburstarethetypicaldynamicdisasters,sothecoalminedynamicdisastershaveseriouslyaffectedourco
4、untry'scoalmining.Scientificandeffectiveforecastthecoalmine'sdynamicdisasters,canreducetheprobabilityofoccurrenceofdynamicdisaster.Theroughsets-artificialneuralnetworkandroughsets-supportvectormachinetechnologyareusedtoestablishtherockburstandthecoalandgasoutburstpredictionmodelint
5、hispaper.Themaincontentsareasfollows:Therockburstandcoalandgasoutburstmechanismhavebeenanalyzed;Theroughsets-neuralnetworksandroughsets-supportvectormachinespredictionmodelsoftherockburstriskhavebeenestablished;Theroughsets-neuralnetworksandroughsets-supportvectormachinesprediction
6、modelsofthecoalandgasoutbursthavebeenestablished;Theabovemodelshavebeentested,andthemodels'predictionresultsofroughsets-neuralnetworksandroughsets-supportvectormachineshavebeencompared,theresultsshow:Intherockburstriskpredictionandthecoalandgasoutburstprediction,thepredictionaccura
7、cyrateofroughsets-supportvectormachinemodelsarehigherthantheroughsets-neuralnetworks,sotheroughsets-supportvectormachineapproachismoresuitableforcoalmine'sdynamicdisasterforecastthantheroughsets-neuralnetworkmethod.Keywords:dynamicdisaster,roughsets,neuralnetworks,supportvectormach
8、ine,forecast山东科技大学硕士学位论文目录