欢迎来到天天文库
浏览记录
ID:34584074
大小:5.14 MB
页数:67页
时间:2019-03-08
《支持向量机及其在纹理分类中应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、II汕头大学硕士学位论文:支持向量机及其在纹理分类中的应用于不同纹理特征的分析,表明当使用支持向量机作为分类器时,在同系列的特征中选择维数更高的特征通常能够得到更好的结果。²将支持向量机与传统的神经网络、LVQ等分类方法在纹理分类上的应用做了比较分析。分类结果表明,支持向量机具有更好更稳定的分类性能,适合于解决高维的纹理分类问题。关键词:纹理分类;支持向量机;统计学习理论;核函数;参数选择ABSTRACTIIIAbstractMachineLearning(ML)basedondataisanimportantresearch
2、contentofpresentintelligenttechnology.Thegoalofmachinelearningisto¯ndtheinternalrelation-shipbetweendatabylearning"thecollecteddata,whichcanbeusedtopredictanddecideonneworunknowndata.TraditionallearningapproachesareusuallybasedontheprincipleofEmpiricalRiskMinimizat
3、ioninsteadofExpectedRiskMinimiza-tion,whichassumethatthetrainingsamplenumbertendsin¯nity.However,theassumptiondoesnotconformtothepracticalapplication,someexcellentapproachintheoryperformnotwellinpractical.StatisticalLearningTheory(SLT)focusesonthemachinelearningofsm
4、allsam-plesizeandcantradeo®betweenthecomplexityofmodelsandgeneralizationperfor-mance,whichincludeVCdimensiontheoryandStructuralRiskMinimizationtheory.SupportVectorMachine(SVM)basedonSLThasexcellentperformanceonsolvingsmallsamplesize,highdimension,andnonlinearpattern
5、classi¯cationproblems,italsosolvee®ectivelytheproblemofover-¯ttingandcurseofdimensionality,andhasgoodgenealizationperformance.Thisthesisaddressonboththetheoryandappli-cationintextureclassi¯cationofSupportVectorMachine.Thecontributionsofthisthesisinclude:²Anoverviewo
6、fboththeoreticalbasisandprincipleofSupportVectorMachineisgiven.Theimplementationalgorithmsareconcerned,andtheirsadvantagesanddisadvantagesandapplicationscopeareshowed.²Summarizetheconstructionapproachesofkernelfunction,includingapproachesbasedonfeaturetransformation
7、,thepropertiesofMercerkernelfunctionandpriorknowledge.Theautocorrelationkernelfunctionhasalsobeenconstructed,andaselectionprocedureofkernelfunctionispresented.IV汕头大学硕士学位论文:支持向量机及其在纹理分类中的应用²AnimprovedgridsearchapproachispresentedforparameterselectionofSup-portVectorM
8、achine.²AnoverallapplicationframeworkforSupportVectorMachineisproposedbasedonthekernelselectionandparametersearchstrategy.²Thispaperalsous
此文档下载收益归作者所有