欢迎来到天天文库
浏览记录
ID:34558825
大小:31.16 KB
页数:8页
时间:2019-03-07
《工作到最后一天的华罗庚》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、工作到最后一天的华罗庚华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。高斯印象中曾听过一个
2、故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和1
3、0的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。数学家华罗庚小时候的轶事华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还
4、不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四
5、岁,你猜一猜华罗庚他说出是多少?失之毫厘,谬以千里 1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。 在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑地对母亲说:“妈妈,您的图像我在这里看得清清楚楚,包括您头上的每根白发,您能
6、看清我吗?”“能,能看清楚。儿啊,妈妈一切都很好,你放心吧!”这时,科马洛夫的女儿也出现在电视屏幕上,她只有12岁。科马洛夫说:“女儿,你不要哭。”“我不哭……”女儿已泣不成声,但她强忍悲痛说:“爸爸,你是苏联英雄,我想告诉你,英雄的女儿会像英雄那样生活的!”科马洛夫叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……” 时间一分一秒地过去了,距离宇宙飞船坠毁的时间只有7分钟了。科马洛夫向全国的电视观众挥挥手说:“同胞们,请允许我在这茫茫的
7、太空中与你们告别。”字串3 即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。”换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。)一个故事引发的数学家 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士
8、沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是
此文档下载收益归作者所有