离散小波变换的时间序列分析和挖掘

离散小波变换的时间序列分析和挖掘

ID:34522927

大小:776.85 KB

页数:37页

时间:2019-03-07

离散小波变换的时间序列分析和挖掘_第1页
离散小波变换的时间序列分析和挖掘_第2页
离散小波变换的时间序列分析和挖掘_第3页
离散小波变换的时间序列分析和挖掘_第4页
离散小波变换的时间序列分析和挖掘_第5页
资源描述:

《离散小波变换的时间序列分析和挖掘》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、6DiscreteWaveletTransform-BasedTimeSeriesAnalysisandMiningPIMWADEECHAOVALIT,NationalScienceandTechnologyDevelopmentAgencyARYYAGANGOPADHYAY,GEORGEKARABATIS,andZHIYUANCHEN,UniversityofMaryland,BaltimoreCountyTimeseriesarerecordedvaluesofaninterestingphenomenonsuchasstockprices

2、,householdincomes,orpatientheartratesoveraperiodoftime.Timeseriesdataminingfocusesondiscoveringinterestingpatternsinsuchdata.Thisarticleintroducesawavelet-basedtimeseriesdataanalysistointerestedreaders.Itprovidesasystematicsurveyofvariousanalysistechniquesthatusediscretewave

3、lettransformation(DWT)intimeseriesdatamining,andoutlinesthebenefitsofthisapproachdemonstratedbypreviousstudiesperformedondiverseapplicationdomains,includingimageclassification,multimediaretrieval,andcomputernetworkanomalydetection.CategoriesandSubjectDescriptors:A.1[Introducto

4、ryandSurvey];G.3[ProbabilityandStatistics]:Timeseriesanalysis;H.2.8[DatabaseManagement]:DatabaseApplications—Datamining;I.5.4[PatternRecognition]:Applications—Signalprocessing,waveformanalysisGeneralTerms:Algorithms,Experimentation,Measurement,PerformanceAdditionalKeyWordsan

5、dPhrases:Classification,clustering,anomalydetection,similaritysearch,predic-tion,datatransformation,dimensionalityreduction,noisefiltering,datacompressionACMReferenceFormat:Chaovalit,P.,Gangopadhyay,A.,Karabatis,G.,andChen,Z.2011.Discretewavelettransform-basedtimeseriesanalysi

6、sandmining.ACMComput.Surv.43,2,Article6(January2011),37pages.DOI=10.1145/1883612.1883613http://doi.acm.org/10.1145/1883612.18836131.INTRODUCTIONAtimeseriesisasequenceofdatathatrepresentrecordedvaluesofaphenomenonovertime.Timeseriesdataconstitutesalargeportionofthedatastoredi

7、nrealworlddatabases[Agrawaletal.1993].Timeseriesdataappearinmanyapplicationdomains,suchasinfinancial,meteorological,medical,socialsciences,computernetworks,andbusiness.Timeseriesarederivedfromrecordingobservationsofvarioustypesofphe-nomena,forexample,temperature,stockprices,h

8、ouseholdincome,patientheartrates,numberofbitstransferred,productsalesvolume

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。