applying a vlsi cad heuristic to a prolog compiler problem

applying a vlsi cad heuristic to a prolog compiler problem

ID:34484317

大小:135.10 KB

页数:5页

时间:2019-03-06

applying a vlsi cad heuristic to a prolog compiler problem_第1页
applying a vlsi cad heuristic to a prolog compiler problem_第2页
applying a vlsi cad heuristic to a prolog compiler problem_第3页
applying a vlsi cad heuristic to a prolog compiler problem_第4页
applying a vlsi cad heuristic to a prolog compiler problem_第5页
资源描述:

《applying a vlsi cad heuristic to a prolog compiler problem》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ApplyingaVLSICADHeuristictoaPrologCompilerProblemTR-96-002OwenKaserDept.ofMSCSUNBSJSaintJohn,N.B.E2L4L5e-mail:owen@unbsj.caAugust19,19961IntroductionIn[DRR95,DRR96]anecientmethodofconstructingjumptablesisexamined.Itassumeswearegivena nitesetofsymbolsS,corresponding

2、tothepredicatesinaPrologprogram.Thepaperconsiderstheoptimizationofcertain nitestateautomatausedinindexingtheprogram;anautomatonmakestransitionsaccordingtosymbolsinSpresentedtoit.Typically,thereareasmallnumberofvalidtransitionsleavingeachstate.Lett;:::;tdenotethestat

3、esofthe1mautomaton,andletJ=fs2Sjslabelsavalidtransitionfromstatetg,for1im,iiAtime-ecientbutspace-inecientrepresentationforsuchanautomatoncanbeobtainedbynumberingstatess2Sarbitrarilyfrom1:::jSj.Letf:S!f1;:::;jSjgdenotethenumberingbijection.Then,thetransitionsleav

4、ingeachstatecouldbeimplementedasasajump(dispatch)tablewithjSjentries;ifsymbolsispresentedtotheautomaton,thenextstateisdeterminedithfromthef(s)entryinthecurrentstate'stable.iWecandobetter.Ifthevalidtransitionsareintherange[min:::max],theentiretableneednotbestored.Ins

5、tead,westoremin,max,andthemax?min+1tableentriesthatfallwithintherange;asexplainedin[DRR95],thisissucient.Anaturaloptimizationproblemarises;ratherthanchoosingthenumberingfunctionfarbi-trarily, ndfs.t.thetotalsizeofalltablesisminimized.Notethatthetotalsizeofalltables

6、ismX(maxff(s)g?minff(s)g+1):s2Js2Jiii=1Clearly,thisvalueisminimizedwhenevermX(maxff(s)g?minff(s)g)s2Js2Jiii=1isminimized.HoweverifjJj=2;1im,theproblemisessentiallytheOPTIMALLINEARiARRANGEMENTproblem[GJ79,page200],andanNP-completenessproofiseasilyobtainedfortheasso

7、ciateddecisionproblem[DRR95].Whatisapparentlyoverlookedisthat,withouttherestrictionthatjJj=2,wehavetheOP-iTIMALLINEARHYPERGRAPHARRANGEMENTproblem.TheSNMheuristicin[DRR95,DRR96]actuallysolvesthisproblem.ThisreportanswersthequestionHowwelldoesSNMperform,whencomparedt

8、ootherheuristicsfortheproblem?"2LinearArrangementsonHypergraphsHypergraphsareimportanttoCADofVLSI[Len90],astheymodelelectricalconnectivity

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。