mit非线性光学讲义nonlinear optics ix

mit非线性光学讲义nonlinear optics ix

ID:34426164

大小:105.78 KB

页数:8页

时间:2019-03-06

mit非线性光学讲义nonlinear optics ix_第1页
mit非线性光学讲义nonlinear optics ix_第2页
mit非线性光学讲义nonlinear optics ix_第3页
mit非线性光学讲义nonlinear optics ix_第4页
mit非线性光学讲义nonlinear optics ix_第5页
资源描述:

《mit非线性光学讲义nonlinear optics ix》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、NonlinearOptics§DiagrammaticRepresentationAllowimmediatetranslationintobothmultiplesolution+steadystates.Equations:(n+1)1t'(n)(n)'ρmn(t)=∫dt1Amn(t−t1)∑[Hml(t1)ρln(t1)−ρml(t1)Hln(t1)](1)ihtolWecanbreakaboveequationintotwoparts,ρ(n+1)1t'(n)ln(t)=∫tdt1Aln(t−t1)∑Hlm(t1)ρmn(t1)(2)ihomH'operatesonk

2、etstateand−1tρ(n+1)(n)'mp(t)=dt1Amp(t−t1)∑ρmn(t1)Hnp(t1)(3)ih∫tonH'operatesonbrastate(n)(t)=A(t−t)ρ(n)−iΩmntwithρmn1mn1omn&Amn=e.Werepresent(1)asρmnn+1ρlnρmlnWerepresent(2)and(3)asρlnρmpn+1ρmnn163NonlinearOpticsFeynmannDiagramTechnique1.Timeisplottedvertically2.Representketandbracomponentsofd

3、ensitymatrixbyverticallinesketbra3.RepresentperturbationmatrixelementsbyverticesForequation(2)lntt1tomnForequation(3)mptt1tomn164NonlinearOpticsDefinelnt≡Aln(t−t1)t1lnl't1≡Hlm(t1)mp't1≡Hnp(t1)nRules:(0)1.Includeρmn(to)factortoaccountforinitialcondition.2.Includeafactorof-1foreachbrainteractio

4、n.3.Foreachinteractionattimetj,integratefromtouptotj+1,−1includeafactorof(ih).(n)(n)4.ρmn(t1)=Amn(t1−to)ρmn(to).5.Frequencycomponentofperturbation165NonlinearOpticsForketstate:rtj+ω'+ω1−iωtj≡Hrl(tj)=−μrlEe2lr'−ω1*iωtj−ωt≡Hrl(tj)=−μrlEej2lForbrastate:k+ω'+ω1−iωtj≡Hmk(tj)=−μmkEet2jmkt−ωj'−ω1*iω

5、tj≡Hmk(tj)=−μmkEe2m166NonlinearOpticsLinearPolarizationProcessng(0)(1)ρgg=1,wantlinearpolarization~ρng(t)ngtt1⇒toggTherearetwochoicesforinteraction.AngtFromgroundtoexcitedstateswilltabsorbphotonforresonance.1+ωtoggBngt−ωt1togg167NonlinearOpticsTranslatediagramA(1)−1t'+ω(0)ρng(t)=(ih)∫tdt1Ang(

6、t−t1)Hng(t1)ρggowheretimeevolutionforzeroorderisneglected.(0)Taketo→−∞,assumeρggconstant,wegetsteadystatesolution,(1)−1−1⎛1−iωt⎞(0)ρng(t)=h(ω−Ωng)⎜−μngEe⎟ρgg⎝2⎠"Resonantterm"→absorbaphoton.TranslatediagramB(1)−1t'−ω(0)ρng(t)=(ih)∫tdt1Ang(t−t1)Hng(t1)ρggoForsteadystate,(1)−1−1⎛1*iωt⎞(0)ρng(t)=

7、h(−ω−Ωng)⎜−μngEe⎟ρgg⎝2⎠"Antiresonantterm"(0)Ifρnn≠0(populationinexcitedstate),wehavetoconsiderngtt1tonnTherearetwochoiceforinteraction168NonlinearOpticsCngtt1−ωtonnDngtt1+ωFromexcitedtogroundstateswillemitphotonforresonance.tonnTranslatediagr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。