Mining of Massive Datasets(2013)_v1.3.pdf

Mining of Massive Datasets(2013)_v1.3.pdf

ID:34273942

大小:2.58 MB

页数:453页

时间:2019-03-04

Mining of Massive Datasets(2013)_v1.3.pdf_第1页
Mining of Massive Datasets(2013)_v1.3.pdf_第2页
Mining of Massive Datasets(2013)_v1.3.pdf_第3页
Mining of Massive Datasets(2013)_v1.3.pdf_第4页
Mining of Massive Datasets(2013)_v1.3.pdf_第5页
资源描述:

《Mining of Massive Datasets(2013)_v1.3.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MiningofMassiveDatasetsAnandRajaramanJureLeskovecStanfordUniv.JeffreyD.UllmanStanfordUniv.Copyrightc2010,2011,2012,2013AnandRajaraman,JureLeskovec,andJeffreyD.UllmaniiPrefaceThisbookevolvedfrommaterialdevelopedoverseveralyearsbyAnandRaja-ramanandJeffUllman

2、foraone-quartercourseatStanford.ThecourseCS345A,titled“WebMining,”wasdesignedasanadvancedgraduatecourse,althoughithasbecomeaccessibleandinterestingtoadvancedundergraduates.WhenJureLeskovecjoinedtheStanfordfaculty,wereorganizedthematerialconsiderably.Hei

3、ntroducedanewcourseCS224WonnetworkanalysisandaddedmaterialtoCS345A,whichwasrenumberedCS246.Thethreeauthorsalsointroducedalarge-scaledata-miningprojectcourse,CS341.Thebooknowcontainsmaterialtaughtinallthreecourses.WhattheBookIsAboutAtthehighestlevelofdes

4、cription,thisbookisaboutdatamining.However,itfocusesondataminingofverylargeamountsofdata,thatis,datasolargeitdoesnotfitinmainmemory.Becauseoftheemphasisonsize,manyofourexamplesareabouttheWebordataderivedfromtheWeb.Further,thebooktakesanalgorithmicpointof

5、view:dataminingisaboutapplyingalgorithmstodata,ratherthanusingdatato“train”amachine-learningengineofsomesort.Theprincipaltopicscoveredare:1.Distributedfilesystemsandmap-reduceasatoolforcreatingparallelalgorithmsthatsucceedonverylargeamountsofdata.2.Simil

6、aritysearch,includingthekeytechniquesofminhashingandlocality-sensitivehashing.3.Data-streamprocessingandspecializedalgorithmsfordealingwithdatathatarrivessofastitmustbeprocessedimmediatelyorlost.4.Thetechnologyofsearchengines,includingGoogle’sPageRank,l

7、ink-spamdetection,andthehubs-and-authoritiesapproach.5.Frequent-itemsetmining,includingassociationrules,market-baskets,theA-PrioriAlgorithmanditsimprovements.6.Algorithmsforclusteringverylarge,high-dimensionaldatasets.iiiivPREFACE7.TwokeyproblemsforWeba

8、pplications:managingadvertisingandrec-ommendationsystems.8.Algorithmsforanalyzingandminingthestructureofverylargegraphs,especiallysocial-networkgraphs.PrerequisitesToappreciatefullythematerialinthisbook,werecommendthefollowingpre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。