asymmetric solve

asymmetric solve

ID:34149693

大小:196.46 KB

页数:10页

时间:2019-03-03

asymmetric solve_第1页
asymmetric solve_第2页
asymmetric solve_第3页
asymmetric solve_第4页
asymmetric solve_第5页
资源描述:

《asymmetric solve》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、OperationsResearchLettersOperationsResearchLetters34(2006)481–490www.elsevier.com/locate/orlSolvingasymmetricvariationalinequalitiesviaconvexoptimizationMicheleAghassia,DimitrisBertsimasb,∗,GeorgiaPerakisbaOperationsResearchCenter,MassachusettsInstituteofTechnology,E40-131,Cambrid

2、ge,MA02139,USAbSloanSchoolofManagementandOperationsResearchCenter,MassachusettsInstituteofTechnology,E53-363,Cambridge,MA02139,USAReceived20May2005;accepted13September2005Availableonline6December2005AbstractUsingduality,wereformulatetheasymmetricvariationalinequality(VI)problemove

3、raconicregionasanoptimizationproblem.Wegivesufficientconditionsfortheconvexityofthisreformulation.WetherebyidentifyaclassofVIsthatincludesmonotoneaffineVIsoverpolyhedra,whichmaybesolvedbycommercialoptimizationsolvers.©2005ElsevierB.V.Allrightsreserved.Keywords:Variationalinequalitie

4、s;Convexoptimization;Duality1.Introductionofsystemsofequations,complementarityproblems,andaclassoffixedpointproblems.Inaddition,foranyThevariationalinequality(VI)problemhasengagedoptimizationproblemoveraclosed,convexfeasiblemembersoftheoptimization,mathematics,transporta-region,the

5、first-orderoptimalityconditionscomprisetionscience,engineering,andeconomicscommuni-aVI.Accordingly,theVIproblemalsogeneralizesties.GivenasetK⊆RnandamappingF:K→convexoptimization.Rn,theVIproblem,denotedVI(K,F),istofindanForacompletediscussionandhistoryoftheVIx∗∈Ksuchthatproblemandass

6、ociatedsolutionmethods,wereferthe∗∗interestedreadertotherecentsurveytextbyFacchineiF(x)(x−x)0∀x∈K.(1)andPang[12]andthemonographbyPatriksson[24].VIs,firstintroducedbyStampacchiaandhiscollab-ThesurveyarticlebyHarkerandPang[16]andtheorators[18,19,23,27,28],subsumemanyotherwell-Ph.D.

7、thesisofHammond[15],aswellastherefer-studiedmathematicalproblems,includingthesolutionencestherein,alsoprovideinsightfulreviewsoftheVIproblemandassociatedalgorithms.∗OneclassoftechniquesforsolvingtheVIproblemCorrespondingauthor.E-mailaddresses:maghassi@alum.mit.edu(M.Aghassi),explo

8、itsthefactthattheKarush–Kuhn–Tuck

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。