基于机器学习的网络流量识别方法与实现

基于机器学习的网络流量识别方法与实现

ID:34145373

大小:8.21 MB

页数:75页

时间:2019-03-03

基于机器学习的网络流量识别方法与实现_第1页
基于机器学习的网络流量识别方法与实现_第2页
基于机器学习的网络流量识别方法与实现_第3页
基于机器学习的网络流量识别方法与实现_第4页
基于机器学习的网络流量识别方法与实现_第5页
资源描述:

《基于机器学习的网络流量识别方法与实现》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、分类号:丁尸私刁舌密级:单位代码:10422学号:如l

2、

3、i11;∥《力番硕士学位论文ThesisforMasterDegree论文题目:饔彳机器字习钓网络;孙量之歹、.;5I:I殉.!l羡与买砚作者姓名堑煎疋培养单位缝臣绁堂工箍鲎E塾专业名称垣篮鱼焦鲤:红主盘指导教师塞垫壅熬煎.合作导师趵心年叶月Z口日原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。本声明的法律责任由本人承担。论

4、文作者签名:堑鱼盘日期:逸!生!生垫关于学位论文使用授权的声明本人完全了解山东大学有关保留、使用学位论文的规定,同意学校保留或向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅;本人授权山东大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存论文和汇编本学位论文。(保密论文在解密后应遵守此规定)论文作者签名:掀导师签名山东大学硕士学位论文目录摘j19《:⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯..IA】8lSTRACT⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

5、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯III第1章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.11.1概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.11.2网络流量识别的研究现状及发展趋势⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.21.2.1流量识别的研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.2.2流量识别的发展趋势⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..51.3论文研究内容及结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6第2章网络流量识别与机器学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.8

6、2.1网络流量识别基础⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.82.1.1网络流量识别的基本概念⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..82.1.2网络流量识别的评价指标⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..92.2机器学习基础⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102.2.1机器学习概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102.2.2机器学习的分类⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102.2.3机器学习的系统模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯112.3网络流量识别算法的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

7、⋯⋯⋯⋯⋯⋯⋯⋯122.4网络流量特征和应用类型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯132.5本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16第3章基于BP神经网络的流量识别方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.173.1人工神经网络概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯173.1.1人工神经网络的起源⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯173.1.2人工神经网络的建模⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯183.1.3人工神经网络的分类⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯193.1.4人工神经网络的应用⋯⋯⋯⋯

8、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯203.2基于BP神经网络的流量识别算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2l山东大学硕士学位论文3.2.1BP算法的核心思想⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯213.2.2BP神经网络的特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯223.2.3BP神经网络的选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2233.2.4基于PSO寻优的BP神经网络流量识别⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯243.3识别结果与分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯263-3.1标准BP神经网络的识别结果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

9、⋯⋯⋯.263.3.2基于PSO寻优的BP神经网络识别结果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯283.4本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29第4章基于SVM的流量识别方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.304.1支持向量机概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯304.1.1二元线性分类问题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯304.1.2非线性分类问题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯324.2基于SVM的流量识别算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯344.2.1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。