Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf

Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf

ID:34141941

大小:271.88 KB

页数:18页

时间:2019-03-03

Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf_第1页
Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf_第2页
Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf_第3页
Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf_第4页
Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf_第5页
资源描述:

《Numerical solutions of fuzzy differential equations by extended Runge–Kutta-like formulae of order 4111111111111111111.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FuzzySetsandSystems189(2011)7491www.elsevier.com/locate/fssNumericalsolutionsoffuzzydifferentialequationsbyextendedRungeKutta-likeformulaeoforder4B.Ghazanfaria,∗,A.ShakeramibaDepartmentofMathematics,LorestanUniversity,68137-17133Khoramabad,IranbLorestanEducationDepar

2、tment,Khoramabad,IranReceived9September2009;receivedinrevisedform28June2011;accepted28June2011Availableonline19July2011AbstractInthispaper,weapplyanumericalalgorithmforsolvingthefuzzyfirstorderinitialvalueproblem,basedonextendedRungeKutta-likeformulaeoforder4.WeuseSei

3、kkalasderivative.Theelementarypropertiesofthisnewsolutionaregiven.WeusetheextendedRungeKutta-likeformulaeinordertoenhancetheorderofaccuracyofthesolutionsusingevaluationsofbothfandf,insteadoftheevaluationsoffonly.©2011ElsevierB.V.Allrightsreserved.Keywords:Fuzzynumbe

4、rs;Fuzzydifferentialequations;ExtendedRungeKutta-likemethods;Numericalsolution;Eulermethod1.IntroductionThetheoreticalframeworkoffuzzyinitialvalueproblems(FIVPs)hasbeenanactiveresearchfieldoverthelastfewyears.TheconceptoffuzzyderivativewasfirstintroducedbyChangandZadeh

5、in[4].ItwasfollowedupbyDuboisandPradein[6],whodefinedandusedtheextensionprinciple.AcomprehensiveapproachtoFIVPshasbeentheworkofSeikkala[19],andKaleva[12,13],especiallyinitsgeneralizedformgivenbyBuckleyandFeuring[2].Theirworkisimportantasitovercomestheexistenceofmultip

6、ledefinitionsofthederivativeoffuzzyfunctions,see[6,10,14,16,19].Also,[2]comparesvarioussolutionstothefuzzyinitialvalueproblemthatonemayobtainusingdifferentderivatives.Theresultsof[19]onacertaincategoryoffuzzydifferentialequations(FDEs)haveinspiredseveralauthorswhohave

7、appliednumericalmethodsforthesolutionoftheseequations.ThemostimportantcontributiononthesenumericalmethodsistheEulermethodprovidedbyMaetal.in[14].AbbasbandyandAllahviranlooin[1]developedfour-stageorderRungeKuttamethodsforaCauchyproblemwithafuzzyinitialvalue.Also,in[15

8、],theauthorsappliedRungeKuttamethodsforamoregeneralcategoryofproblems,andtheyprovedconvergencefors-stageRungeKuttamethods.Pedersona

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。