资源描述:
《行列式的若干应用毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、行列式的若干应用TheNumberofApplicationsofTheDeterminants专业:数学与应用数学作 者:指导老师:学校时间III摘要行列式是数学研究中的一类重要的工具之一,它的应用非常广泛.本文从以下三个方面对行列式的应用进行了论述:探讨了行列式与线性方程组的关系以及在解线性方程组中的应用;举例说明了行列式在初等代数中的应用,如在因式分解中应用,证明不等式以及恒等式;最后综述了行列式在解析几何中的若干应用.关键词:行列式;矩阵;线性方程组;秩;因式分解;平面组;点组IIIAbstractDeterminantisakindofimportantt
2、oolsinthemathematicalstudy,itisaverywiderangeofapplications.Inthispaper,wehavebeentodiscussfromthefollowingthreeaspectsoftheapplicationsofthedeterminants:Toexploretherelationshipbetweenthedeterminantandlinearequationsandtheapplicationinthesolutionoflinearequations;examplesoftheapplicati
3、onofthedeterminantinalgebra,suchastheapplicationoffactorization,toprovethatinequalityandidentity;inthefinal,wehavemadeoverviewofthenumberofapplicationsofthedeterminantsinanalyticgeometry.Keywords:Determinant;Matrix;Linearequations;Rank;Factorization;Planegroup;PointgroupIII目录摘要IAbstract
4、II0引言11行列式在线性方程组中的一个应用12行列式在初等代数中的几个应用22.1用行列式分解因式22.2用行列式证明不等式和恒等式33行列式在解析几何中的几个应用43.1用行列式表示公式43.2行列式在平面几何中的一些应用63.3行列式在三维空间中的应用8参考文献150引言行列式是研究数学的重要工具之一.例如线性方程组(见文[1]-[5])、多元一次方程组的解、三维空间中多个平面组或多个点组的相关位置(见文[2])、初等代数(见文[9])、解析几何(见文[6]-[8])、维空间的投影变换、线性微分方程组等,用行列式来计算是很便利的.本文进一步研究探讨了行列式在线性
5、方程组、初等代数、解析几何三个方面的应用.1行列式在线性方程组中的一个应用设含有个变元的个一次线性方程组为(1)设方程组(1)的系数矩阵的秩是,不失一般性,假定不等于零的阶行列式是.行列式中的元素,就是矩阵中去掉第一列的元素以后剩下的元素,并按照它们的原有位置排列.我们把看作是未知数,是已知数,解方程组(1),得(2)式中是行列式的第列元素换以所成的行列式.也就是第15页,共15页.把中第列移到第一列,得.上式右边的行列式用表示,行列式是矩阵中去掉第列剩余下的元素所组成.故.代入(2)式,得,或.结论[2]:方程组(1)中的与成比例,式中是从矩阵中去掉第列剩余下的元素
6、做成的行列式.2行列式在初等代数中的几个应用2.1用行列式分解因式利用行列式分解因式的关键,是把所给的多项式写成行列式的形式,并注意行列式的排列规则.下面列举几个例子来说明.例2.1.1分解因式:.解第15页,共15页.例2.1.2分解因式:.解原式.2.2用行列式证明不等式和恒等式我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变;如果行列式中有一行(列)的元素全部是零,那么这个行列式等于零.利用行列式的这些性质,我们可以构造行列式来证明等式和不等式.例2.2.1已知,求证.证明令,则.命题得证.例2.2.2已知求证.证明令,
7、则第15页,共15页命题得证.例2.2.3已知,求证.证明令,则而,则,命题得证.3行列式在解析几何中的几个应用3.1用行列式表示公式3.1.1用行列式表示三角形面积以平面内三点为顶点的的面积S是(3)的绝对值.证明将平面三点扩充到三维空间,其坐标分别为,其中为任意常数.由此可得:,则第15页,共15页面积为=.3.1.2用行列式表示直线方程直线方程通过两点和的直线的方程为.(4)证明由两点式,我们得直线的方程为.将上式展开并化简,得此式可进一步变形为此式为行列式(4)按第三行展开所得结果.原式得证.3.1.3应用举例例若直线过平面上两个不同的已知点