欢迎来到天天文库
浏览记录
ID:34126615
大小:6.48 MB
页数:53页
时间:2019-03-03
《在线社会网络的动态社区分析与流行度预测》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、万方数据太原理工大学硕士研究生学位论文communitiesinlargenetworks.Bytestsweseethatdifferentnodeorderbringsdifferentperformanceanddifferentcommunitystructure.Wefindsomenodesswingindifferentcommunitiesthatinfluencetheperformance.SoWeintroduceanewconceptOVthatshowsthestrengthofconnecti
2、onbetweennodes.wedesignsomestrategiesonthesweepingorderofnodetoreducethecomputingcostmadebyrepetitionswing。Experimentsonsyntheticdatasetsandrealdatasetsaremade,whichshowourimprovedstrategiescanimprovetheperformanceandcorrectness.Secondly,weexploredthecommunitynet
3、workstructureofmicrobloginformationdisseminationnetworkfromthemacro.weconstructedanewinformationdiffusionnetworkaccordingtomicrobloggingforwardingpath,differentfromthetraditionalnetworks.Wedodynamiccommunitydiscoveryonnetworkssnapshotswhichisdividedbyonemonthinte
4、rvalstoanalyzetheevolutionofthecommunity.Thirdl5wedoempiricalanalysisonSinaWeiboDatasets.Westudiedthepopularityoftweetsinmicrobloggingnetworkandintroduceanovelconcept“popularitydegree".Throughtheempiricalanalysisofdifferentpopularitydegree,wefindtheretweetinginfo
5、rmationofatweetatanearliertimecanhelppredictitsfinalpopularity.Finally,weproposeamodelbasedonSVMwiththeretweetinginformationwithinonehour.Experimentalresultsshowourmodelhasbetterabilityofprediction.Infuturework,wewillcontinuetofurtherstudyandimproveitsIV万方数据太原理工大
6、学硕士研究生学位论文abilitytopredictthehighlypopularmicroblog.KEYWORDS:Microblog,Modularity,CommunityDetection,InformationDiffusion,PopularityDegreeV万方数据太原理工大学硕士研究生学位论文VI万方数据太原理工大学硕士研究生学位论文目录第一章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..11.1课题的研究背景⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11.2国内外研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
7、21.2.1微博信息传播的研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..21.2.2复杂网络社区发现研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31.3课题研究的目的及意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯51.4论文主要工作及结构安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.51.4.1论文主要工作⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..51.4.2论文结构安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..6第二章相关基础理论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯92.1微博网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯92.2复杂网络中的社区结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1
8、02.2.1社区结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..102.2.2信息熵⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.122.2.3归一化互信息⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.122.2.4基准网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..142.3分类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..152.3.1支持向量机⋯⋯⋯⋯
此文档下载收益归作者所有