谈谈新课程改中的“算法循环结构流程图”的教学精选

谈谈新课程改中的“算法循环结构流程图”的教学精选

ID:34053374

大小:127.00 KB

页数:14页

时间:2019-03-03

谈谈新课程改中的“算法循环结构流程图”的教学精选_第1页
谈谈新课程改中的“算法循环结构流程图”的教学精选_第2页
谈谈新课程改中的“算法循环结构流程图”的教学精选_第3页
谈谈新课程改中的“算法循环结构流程图”的教学精选_第4页
谈谈新课程改中的“算法循环结构流程图”的教学精选_第5页
资源描述:

《谈谈新课程改中的“算法循环结构流程图”的教学精选》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、由一道课本例题引发的思考论文摘要:本文是分析新教材中“算法循环结构流程图”的类型、循环结构的退出条件、循环结构与其他结构的联系、以及设计循环结构流程图应注意的事项等四个方面,其中重点谈到如何把握和设计循环结构的退出条件,着手探索算法循环结构流程图的教学。关键词:流程图;计数变量;循环结构为了加强高中课程与社会发展、科技进步以及学生生活的联系,于是在2004年高中课程改革时,高中数学新教材就增加了算法知识,并放在数学必修Ⅲ的第一章。其中流程图是算法中的重点,而循环结构的流程图是一个难点,学生在学习时感到最困难的是循环结构出口条件的把握,也就是说

2、何时应该退出循环结构执行下一步?退出时该用“>”还是“≥”,用“<”还是“≤”?计数变量、累加变量的初始值与终值分别是什么?循环结构中的当型与直到型有何区别?等等,学生感到茫然。若学生掌握了流程图,编程序就容易了,因此我认为,加强对算法中循环结构的分析与研究很有必要。下面结合具体问题谈谈我在学习新教材和实施“算法中循环结构流程图”教学过程中的认识和体会。满足条件循环体是否图1当型循环结构正如我们知道的,“在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处步骤的情况,这就是循环结构。反复执行的步骤称为循环体。”【1】那么我们在教

3、学中应该关注的是什么呢?关注的问题一:循环结构有哪些类型?根据对条件的不同处理,循环结构分为如下两种,满足条件循环体是否图2直到型循环结构(一)当型(while型)。“当型循环在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止;”【2】当型循环有时也称为“前测试型”循环(如图1)。(二)直到型(until型)。“直到型循环在执行了一次循环体之后,对控制循环条件进行判断,当条件不满足时执行循环体,满足则停止。”【3】直到型循环又称为“后测试型”循环(如图2)。对同一个问题,一般来说既可以用当型,又可以用直到型。当然其

4、流程图(即程序框图)是有所不同的。14开始I=0S=0I>=100?输出SS=S+II=I+1结束是否图4直到型循环结构开始I=0S=0I<100?输出SS=S+II=I+1结束是否图3当型循环结构例1设计一个计算1+2+3+…+100的值的程序框图。其当型循环结构程序框图是图3,直到型循环结构程序框图是图4。循环结构不能是永无终止的“死循环”,一定要在某个条件下终止循环,这就需要判断框作出判断,因此,循环结构中一定包含判断框。从以上例子还可看出当型循环的判断条件“I<100?”与直到型循环的判断条件“I>=100?”刚好是相反的。即在同一算

5、法中,当型循环与直到型循环的条件互为对立。关注的问题二:如何把握和设计循环结构的退出条件?开始t=0,i=1,p=1p=p×ii>46?输出pt=t+1结束是否i=i+t图6直到型循环结构开始s=0,i=1s=s+ii>31?输出si=i+2结束是否图5直到型循环结构这里有必要先介绍计数变量和累加变量的作用:计数变量是用于记录循环次数,同时它的取值还用于判断循环是否终止;累加变量(或称累积变量)用于输出结果。(一)计数变量和累加变量(或称累积变量)一般是同步执行的,计数一次,就累加(或累积)一次。例1中“I”是计数变量,“S”是累加变量。每对

6、I计数一次,就对S累加一次,当I=100时,退出循环,此时循环次数刚好为100次。14(二)有时计数变量并没有准确记录循环次数。如:例2设计求1+3+5+7+…+31的流程图。例2流程图(图5)用的是直到型循环,当中的s是累加变量,i是计数变量,这里每对s累加一次,就对i计数一次,当i>31(即i=33)时要退出循环体,但此时循环次数却只有16次;(三)有时计数变量有两个,一个用来判断循环是否结束,另一个用来准确记录循环次数。如:否开始输入nd=d+1n>2?结束是d+1整除n?是否d=0如何退出循环?d≥n-2?否是输出“n不是质数”输出“

7、n是质数”图7例3设计求1×2×4×7×…×46的程序框图。例3程序框图(图6)是直到型循环,当中t与i都是计数变量,p是累积变量,每对t和i计数一次,就对p累积一次,其中t是控制循环次数,i是判断循环是否终止。当i>46(即i=56,t=9)时,退出循环体,此时循环次数刚好是9次,只是在设计框图时不需人为算出t=9。(四)有时要退出循环体,有计数变量还是无法真正退出循环结构的。如例4任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。算法如下:第一步,判断n是否等于2。若n=2,则n是质数;若n>2,执行第二步。第二步,

8、依次从2~(n-1)检验是不是n的因数,即整除n的数。若有这样的数,则n不是质数;若没有这样的数,则n是质数。根据算法直接画出的程序框图(图7),这里d是计数变量,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。