基于rbf神经网络在玻璃窑炉温度控制上研究

基于rbf神经网络在玻璃窑炉温度控制上研究

ID:34038303

大小:2.38 MB

页数:68页

时间:2019-03-03

基于rbf神经网络在玻璃窑炉温度控制上研究_第1页
基于rbf神经网络在玻璃窑炉温度控制上研究_第2页
基于rbf神经网络在玻璃窑炉温度控制上研究_第3页
基于rbf神经网络在玻璃窑炉温度控制上研究_第4页
基于rbf神经网络在玻璃窑炉温度控制上研究_第5页
资源描述:

《基于rbf神经网络在玻璃窑炉温度控制上研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、东北大学硕士学位论文AbstractResearchontheControloftheTemperatureofGlassFurnaceBasedonRBFNeuralNetworkAbstractThisthesistakesglassfumac宅asresearchobject,whichdiscussestheapplicationofintelligentcontroltononlineartime-delaycomplicatedsystemintheindustrialprocess.Thetemperatureofglas

2、sfurnaceisthemainparameteringlassproductionprocess,Maintainingtemperatureonitssetpointisthekeyfactorforassuringhigllqualityofglassproducts.Thethesisfirstlyintroducesthestructure,technologicalprocessandtemperaturecontrolrequirementofglassfurnace,andthenpresentsadynamiccha

3、racteristicanalysisofit.Thecontrolledobjectisaself-balanceprocesswithfeaturesoflargetimelagandinertia;alltheparametersarechangedwiththetemperatureandoperatingmodeoffurnace.Atpresent,themainlymethodusedinthetemperaturecontrolofglassfurnaceisPIDcontr01.AlthoughPIDcontrol伽a

4、chievesatisfiedresultinsmallrangeneartemperaturesetpoint,itcan’tcontroltemperaturetoitssetpointrapidlyandsmoothlywhentheworkconditionchangebyawidemarginduetotheinfluenceoftimelagandparametersvarying.SoPIDcontrolissubjectedtocomparativelybiglimitation.FurtherlyIintroduceS

5、imthpredictionmethod,fuzzycontrol,adaptivecontrolmethod.Fromtheresultsofsimulation,wecanknowthatintelligentmethodscansolvethetime-delaycharacteristicofglassfurnace.ImainlyintroduceRBFneuralnetworkcontrolmethodincludingPIDcontrolmethodbasedonRBFneuralnetwork,model-referen

6、ceadaptivecontrolofPIDbasedonRBFneuralnetwork,andinternalcontrolmethod,Ialsodosomeresearchonthebigtime—delaycharacteristicofglassfurnace.Usingthedatassampledatthespot,includingtheflowofthefuel,theflowoftheair,thetemperatureoftheglassfurnace,IidentifytheglassfurnaceusingR

7、BFneuralnetwork,andcontrolitusingPIDbasedonRBFneuralnetwork,alsocomparethePIDbasedonRBFneuralnetworkandPIDoftradition,concludingthattheformaerhasbettercapability.Theresultofsimulationindicatesthattheself-adaptivePIDcontrolmethodbasedonneuralnetworkwhichthethesisadoptshas

8、bettereffectsandthecontrollerpossessgoodabilityofregulation,self-learningandrobustness.Attheendofthisth

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。