资源描述:
《Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、EveryinvertiblematrixisdiagonallyequivalenttoamatrixwithdistincteigenvaluesMan-DuenChoi,ZejunHuangy,Chi-KwongLiz,andNung-SingSzexAbstractWeshowthatforeveryinvertiblenncomplexmatrixAthereisannndiagonalinvertibleDsuchthatADhasdistincteigenvalues.Usingthisresult,wearmaconjecture
2、ofFeng,Li,andHuangthatannnmatrixisnotdiagonallyequivalenttoamatrixwithdistincteigenvaluesifandonlyifitissingularandallitsprincipalminorsofsizen 1arezero.AMSSubjectClassication.15A18.Keywords.Invertiblematrices,diagonalmatrices,distincteigenvalues.1IntroductionDenotebyMnthesetof
3、nncomplexmatrices.In[1],theauthorspointedoutthatmatriceswithdistincteigenvalueshavemanyniceproperties.TheythenraisedthequestionwhethereveryinvertiblematrixinMnisdiagonallyequivalenttoamatrixwithdistincteigenvalues,andconjec-turedthatamatrixinMnisnotdiagonallyequivalenttoamatrixw
4、ithdistincteigenvaluesifandonlyifitissingularandeveryprincipalminorofsizen 1iszero.TheyprovidedaproofformatricesinMnwithn3,anddemonstratedthecomplexityoftheproblemformatricesinM4usingtheirapproach.Inthisnote,wearmtheirconjecturebyprovingthefollowingtheorem.Theorem1.1SupposeA2Mn
5、isinvertible.ThereisaninvertiblediagonalD2MnsuchthatADhasdistincteigenvalues.Oncethisresultisproved,wehavethefollowingcorollary.DepartmentofMathematics,UniversityofToronto,Toronto,Ontario,CanadaM5S2E4.(choi@math.toronto.edu)yDepartmentofAppliedMathematics,TheHongKongPolytechnicU
6、niversity,HungHom,Kowloon,HongKong.(huangzejun@yahoo.cn)zDepartmentofMathematics,CollegeofWilliam&Mary,Williamsburg,Virginia23187-8795,USA.ThisresearchwasdonewhilehewasvisitingTheHongKongUniversityofScience&Technologyin2011underthesupportofaFulbrightFellowship.Liisanhonoraryprofe
7、ssorofTheUniversityofHongKong,TaiyuanUniversityofTechnology,andShanghaiUniversity.(ckli@math.wm.edu)xDepartmentofAppliedMathematics,TheHongKongPolytechnicUniversity,HungHom,Kowloon,HongKong.(raymond.sze@inet.polyu.edu.hk)1Corollary1.2LetA2Mn.Thefollowingareequivalent.(a)Aisnotdia
8、gonallyequivalenttoamatrixwithdistinctei