matrix polynomial equations, and rational and algebraic matrix equations

matrix polynomial equations, and rational and algebraic matrix equations

ID:30179039

大小:439.50 KB

页数:54页

时间:2018-12-27

matrix polynomial equations, and rational and algebraic matrix equations_第1页
matrix polynomial equations, and rational and algebraic matrix equations_第2页
matrix polynomial equations, and rational and algebraic matrix equations_第3页
matrix polynomial equations, and rational and algebraic matrix equations_第4页
matrix polynomial equations, and rational and algebraic matrix equations_第5页
资源描述:

《matrix polynomial equations, and rational and algebraic matrix equations》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、6MatrixPolynomialEquations,andRationalandAlgebraicMatrixEquations6.1UnilateralPolynomialEquationswithTwoVariables6.1.1ComputationofParticularSolutionstoPolynomialEquationsConsiderthefollowingequationAXBY+=C,(6.1.1)lìplìqlìmpìmwhereA=A(s)≠[s],B=B(s)≠[s],C=C(s

2、)≠[s],X=X(s)≠[s]qìmandY=Y(s)≠[s].GiventhematricesA,BandC,computematricesXandYsatisfying(6.1.1).Thefollowingproblemwillbecalledthedualtotheaboveone.GiventhepolynomialmatricespmìììqmlmAA=≠()s---[],sssssBB=≠()[],CC=≠()[],lìplìqcomputepolynomialmatricesX=X(s)≠[s

3、]andY=Y(s)≠[s]satisfyingtheequationXA+=YBC.(6.1.2)Usingthetransposewecantransform(6.1.2)into(6.1.1).Theorem6.1.1.Equation(6.1.1)hasasolutionifandonlyifoneofthefollowingconditionsismet:1.[A,B,C]and[A,B,0]arerightequivalentmatrices,314PolynomialandRationalMatr

4、ices2.agreatestcommonleftdivisor(GCLD)ofthematricesAandBisaleftdivisorofthematrixC.Proof.LetX0,Y0beasolutionto(6.1.1),thatis,AX0+BY0=C.Then»IX00º…»[,,]ABC=+[]ABAXBY,,00=[,,0]0AB…IY0».…¬00I»¼AccordingtoDefinition1.7.1[A,B,C]and[A,B,0]arerightequivalentmatrice

5、s,since»ºIX00…»0IY(6.1.3)…»0…»¬¼00Iisaunimodularmatrix.Conversely,if[A,B,C]and[A,B,0]arerightequivalentmatrices,thenthereexistsaunimodularmatrixP=P(s)suchthat[,,][,,0]ABCABP=,(6.1.4)wherethematrixPisoftheform»ºIR01…»0IR.(6.1.5)…»2…»¬¼00IFrom(6.1.4)itfollowst

6、hatAR1+BR2=C.ThusthepairR1,R2constitutesasolutionto(6.1.1).Nowwewillshowthatif(6.1.1)hasthesolutionX0,Y0,thenGCLDofthematricesAandBisaleftdivisorofthematrixC.LetLbeaGCLDofthematricesAandB,thatis,AL==ABL,B,(6.1.6)11whereA1,B1arepolynomialmatrices.Substitution

7、of(6.1.6)intotheequationAX+=BYC(6.1.7)00yieldsMatrixPolynomialEquations,andRationalandAlgebraicMatrixEquations315LAXBY(10+=10)C.(6.1.8)ThusthematrixLisaleftdivisorofthematrixC.NowwewillshowthatifLisaleftdivisorofC,then(6.1.1)hasasolution.ByassumptionC=LC1,wh

8、ereC1isapolynomialmatrix.Ontheotherhand,theassumptionthatLisaGCLDofAandBimpliestheexistenceofpolynomialmatricesU11andU21suchthatAU+=BUL.(6.1.9)1121Post-multiplying(6.1.9)byC1,andtakingintoaccoun

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。