欢迎来到天天文库
浏览记录
ID:33767490
大小:641.78 KB
页数:14页
时间:2019-02-28
《考点22:勾股定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、厦门郑剑雄数学全国小学奥数群:221739457,中考数学群:579251397,初中奥数学生群:253736211,初中奥数教练群112464128,高考数学交流群:536036395,全国高中奥数学生群:591782992(2号群:835403229),高中奥数教练群195949359新浪微博@郑剑雄微信:v136257437QQ:1362574372018中考数学试题分类汇编:考点22勾股定理一.选择题(共7小题)1.(2018•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵
2、在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.2.(2018•枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FA
3、D+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,厦门数学教师交流群:259652195,厦门培训机构教师招聘群:186883776,大学数学资料群:702457289,物理竞赛群:271751860,化学竞赛群:271751511,生物竞赛群:254139830,信息竞赛群:281798334,英语口语群:168570356,心算交流群:131033273厦门郑剑雄数学全国小学奥数群:2217
4、39457,中考数学群:579251397,初中奥数学生群:253736211,初中奥数教练群112464128,高考数学交流群:536036395,全国高中奥数学生群:591782992(2号群:835403229),高中奥数教练群195949359新浪微博@郑剑雄微信:v136257437QQ:136257437∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE的长为.故选:A.3.(2018•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的
5、“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,厦门数学教师交流群:259652195,厦门培训机构教师招聘群:18688377
6、6,大学数学资料群:702457289,物理竞赛2群:271751860,化学竞赛群:271751511,生物竞赛群:254139830,信息竞赛群:281798334,英语口语群:168570356,心算交流群:131033273厦门郑剑雄数学全国小学奥数群:221739457,中考数学群:579251397,初中奥数学生群:253736211,初中奥数教练群112464128,高考数学交流群:536036395,全国高中奥数学生群:591782992(2号群:835403229),高中奥数教练群195949359新浪微博@郑剑雄微信:v13625743
7、7QQ:136257437故选:D.4.(2018•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积.【解答】解:设小正方形的边长为x,∵a=3,b=4,∴AB=3+4=7
8、,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+
此文档下载收益归作者所有