中考数学试题分类汇编 考点22 勾股定理(含解析)

中考数学试题分类汇编 考点22 勾股定理(含解析)

ID:47733944

大小:113.00 KB

页数:12页

时间:2019-11-09

中考数学试题分类汇编 考点22 勾股定理(含解析)_第1页
中考数学试题分类汇编 考点22 勾股定理(含解析)_第2页
中考数学试题分类汇编 考点22 勾股定理(含解析)_第3页
中考数学试题分类汇编 考点22 勾股定理(含解析)_第4页
中考数学试题分类汇编 考点22 勾股定理(含解析)_第5页
资源描述:

《中考数学试题分类汇编 考点22 勾股定理(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、xx中考数学试题分类汇编:考点22勾股定理 一.选择题(共7小题)1.(xx•滨州)在直角三角形中,若勾为3,股为4,则弦为(  )A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A. 2.(xx•枣庄)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为(  )A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对

2、顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即

3、CE的长为.故选:A. 3.(xx•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为(  )A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2

4、=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D. 4.(xx•温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(  )A.20B.24C.D.【分析】欲求矩形的面积,则求出小正方形的边长即可,由此可设小正方形的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程求出x的值,进而可求出该矩形的面积.【解答】解:设小正方形的边长为

5、x,∵a=3,b=4,∴AB=3+4=7,在Rt△ABC中,AC2+BC2=AB2,即(3+x)2+(x+4)2=72,整理得,x2+7x﹣12=0,解得x=或x=(舍去),∴该矩形的面积=(+3)(+4)=24,故选:B. 5.(xx•娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sinα﹣cosα=(  )A.B.﹣C.D.﹣【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求sinα和cosα的值,进而可求出sinα﹣cosα的值.【解答】解:∵小正方

6、形面积为49,大正方形面积为169,∴小正方形的边长是7,大正方形的边长是13,在Rt△ABC中,AC2+BC2=AB2,即AC2+(7+AC)2=132,整理得,AC2+7AC﹣60=0,解得AC=5,AC=﹣12(舍去),∴BC==12,∴sinα==,cosα==,∴sinα﹣cosα=﹣=﹣,故选:D. 6.(xx•长沙)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面

7、积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为(  )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A. 7.(xx•东营)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是( 

8、 )A.B.C.D.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。