高中数学公式大全_数学公式123

高中数学公式大全_数学公式123

ID:33760228

大小:336.44 KB

页数:28页

时间:2019-03-01

高中数学公式大全_数学公式123_第1页
高中数学公式大全_数学公式123_第2页
高中数学公式大全_数学公式123_第3页
高中数学公式大全_数学公式123_第4页
高中数学公式大全_数学公式123_第5页
资源描述:

《高中数学公式大全_数学公式123》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学常用公式及常用结论1.元素与集合的关系x∈A⇔∉xCA,xCA∈⇔∉xA.UU2.德摩根公式C(A∩B)=CACBC∪;(A∪B)=CACB∩.UUUUUU3.包含关系AB∩=A⇔AB∪=B⇔A⊆B⇔CB⊆CAUU⇔ACB∩=Φ⇔CA∪B=RUU4.容斥原理cardA(∪B)=cardAcardBcardA+−(∩B)cardABC(∪∪)=cardAcardBcardCcardAB++−(∩)−cardA(∩B)−cardB(∩C)−cardC(∩A)+cardA(∩B∩C).nnn5.

2、集合{,aa,⋯,a}的子集个数共有2个;真子集有2–1个;非空子集有2–112nn个;非空的真子集有2–2个.6.二次函数的解析式的三种形式2(1)一般式fx()=ax+bxca+(≠0);2(2)顶点式fx()=axh(−)+ka(≠0);(3)零点式fx()=axx(−)(xx−)(a≠0).127.解连不等式N

3、()fx−

4、<⇔>022M−fx()11⇔>.fx()−NM−N8.方

5、程f(x)=0在(k,k)上有且只有一个实根,与f(k)f(k)<0不等价,前者是后12122者的一个必要而不是充分条件.特别地,方程ax+bx+c=0(a≠0)有且只有一个实根在bk+k12(k,k)内,等价于f(k)f(k)<0,或f(k)=0且k<−<,或f(k)=0且12121122a2k1+k2b<−0时,若x=

6、−∈[p,q],则2abfx()=f(−),()fx={fpfq(),()};minmaxmax2abx=−∉[p,q],fx()={fpfq(),()},fx()={fpfq(),()}.maxmaxminmin2ab(2)当a<0时,若x=−∈[p,q],则fx()=min{fpfq(),()},若min2abx=−∉[p,q],则fx()=max{fpfq(),()},fx()=min{fpfq(),()}.maxmin2a10.一元二次方程的实根分布依据:若fmfn()()<0,则方程f(

7、x)=0在区间(,)mn内至少有一个实根.设f(x)=x+px+q,则22⎧p−4q≥0⎪(1)方程f(x)=0在区间(m,+∞)内有根的充要条件为f(m)=0或⎨p;⎪−>m⎩2⎧fm()>0⎪fn()>0⎪⎪(2)方程f(x)=0在区间(,)mn内有根的充要条件为fmfn()()<0或⎨p2−4q≥0⎪⎪m<−p0⎩afm()>02⎧p−4q≥0⎪(3)方程f(x)=0在区间(−∞,)n内有根的充要条件为fm()<0或⎨p.⎪−

8、⎩211.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间(−∞,+∞)的子区间L(形如[α,β],(−∞,β],[α,+∞)不同)上含参数的二次不等式fxt(,)≥0(t为参数)恒成立的充要条件是fxt(,)≥0(x∉L).min(2)在给定区间(−∞,+∞)的子区间上含参数的二次不等式fxt(,)≥0(t为参数)恒成立的充要条件是fxt(,)≤0(x∉L).man⎧a≥0⎪⎧a<042(3)f(x)=ax+bx+c>0恒成立的充要条件是⎨b≥0或⎨.2⎪⎩b−4ac<0⎩c>012.

9、真值表pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假13.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(n−1)个小于不小于至多有n个至少有(n+1)个对所有x,存在某x,成立不成立p或q¬p且¬q对任何x,存在某x,不成立成立p且q¬p或¬q14.四种命题的相互关系原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p15.充要条件(1)充分条件:若p⇒q,则

10、p是q充分条件.(2)必要条件:若q⇒p,则p是q必要条件.(3)充要条件:若p⇒q,且q⇒p,则p是q充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设x⋅x∈[a,b],x≠x那么1212f(x)−f(x)(x−x)[fx()−fx()]>0⇔12>0⇔f(x)在[a,b]上是增函数;1212x−x12f(x)−f(x)12(x−x)[fx()−fx()]<⇔0<0⇔f(x)在[a,b]上是减函数.1212x−x12(2)设函数y=f(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。