欢迎来到天天文库
浏览记录
ID:33760190
大小:645.01 KB
页数:10页
时间:2019-03-01
《全文翻译修改版》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、自动车牌识别的车牌区域提取摘要:自动车牌识别是一项包含通过读取车牌确认交通工具的影像程序的技术。在这篇文献中我们设计了一个可以通过来自交通工具尾部的影像而提取车牌区域的系统。这个系统由电子照相机,连接照相机与软件模块的软件以及提取和辨认车牌号的软件模块组成。照相机获取预先定义的分解影像,然后将其传输到软件模块。软件模块形成了整个系统的核心。它研究了输入图像分析,鉴定了车牌定位,图像分割,字符识别。上面的字符我们通过使用图像上的连通分量的概念来提取车牌区域。车牌上的字符使用数字图像处理进行字符分割并且使用模板匹配进行字符识别。这种算法程序在MATLAB软件上实施并获得与理论预测相符合的结果。
2、这篇论文的第一部分讨论了相关的工作以及应用领域。论文的后面一部分展示了算法和测试结果的实验验证。关键字:车牌识别,LPR,特征提取一:介绍自动车牌识别系统通过阅读它的车牌鉴定该车辆。一个有效的自动车牌识别系统可以成为全电脑控制的道路交通监控系统、停车系统等的核心。车牌识别系统包含三个主要过程:(一):车牌提取(二):字符分割(三):字符识别在印度,纵所周知车牌缺少统一标准。然而,车牌的特征是:在字符和字符的统一背景中强度形成高度对比。车牌也许由不同的材料,成分和反射性构成。它们有各种各样的颜色,字符的字体、句法、大小、间距和安置以致引起更多变化。这种多样性在成功获得车牌自动阅读方面增加了较
3、高的维度的复杂性。二:问题陈述自动车牌识别系统可以应用于停车场管理,入口访问控制,自动收费、监视等。【8】【9】。自动车牌识别系统的重要优势是:它能保留车辆的图像记录,这对于打击犯罪和欺诈行为很有效。目前,在印度和大多数发展中国家,车牌没有标准【5】。它们的尺寸各不相同所以使用有关车牌尺寸先验知识的方法不能够在这类的国家有效使用。而我们提出的方法能够提取任意尺寸大小的车牌区域,所以与缺少车牌标准这个问题不相干。三:相关工作自动车牌识别系统仍然在它的发展初期阶段。牌照提取是整个系统中最具挑战性的部分,并且人脉仅提方法了很少相关。其中一个方法包含了霍夫变换的使用【1】【2】【8】。候选矩形区通
4、过检测水平和垂直线来获取(由于车牌是矩形的)。在那些候选矩形区中,通过先验知识选择最适合矩形区。另一个方法包含了图像频谱分析【3】,【8】。拥有自身特性频率响应的车牌区域会从图像剩余部分过滤出来。在我们的方法中我们不使用图像连通分量的概念。因为车牌使用的字符有唯一的大小,使我们能够从剩余图像中分离出来。我们提出了一种利用车牌特征的方法。四:框图在图一中展示了整个自动车牌识别系统框图。它包含一个数码相机,该相机能够以480×640的分辨率捕获图像(低分辨率提供处理速度)。相机能够自动聚焦,自动缩放,以及封闭特点则能产生更好的效果。被获取图像通过相机转移到软件模块上。正如介绍中提到的,模型分为
5、三个过程:车牌提取,字符分割,字符识别。图1软件模块首先提取最可能车牌区域,通过使用连接分量的概念来实现(二值图像的不断扩展)。车牌上写的字符形成联通分量,它的尺寸大小落在一个已知范围内。连通分量的长度从获取图像的距离处开始变化。通过分析不同图像射击距离(从2米到5米)以及垂直方向的不同角度(垂直方向-20度到+20度)来确定连通分量的范围。该范围落在250到30之间(具体到MATLAB)。我们从图像中过滤所有落在该范围的分量,提取出最可能车牌区域。从提取出的车牌区域分割每一个字符并识别。随后从分割的车牌区域内提取每个字符以及字符识别。最后。识别出的车牌数字用于做特殊决定的应用。五:车牌区
6、域提取车牌区域是通过使用图像中连通分量的概念来提取的(数学形态学)。在图2中,展示了车牌提取模块的框图。被获取的RGB图像被转换成已切割的灰度图像。图2切割可以移除不需要的边缘区域。然后被切割的图像会转换成灰度图像。该灰度图像会转换成它的二值图像。通过连通分量的分析车牌区域从二值图像中移除。从原始二值图像中去除这个得到了一个车牌区域的图像。我们使用MATLAB对拥有不同车牌尺寸的图像做实验分析和测试。由于空间限制我们只能包含两个样板图像。步骤A到K解释了从被获取图像中提取车牌区域的过程。所有步骤都在MATLAB软件上实施。A:被获取图像的大小是480×640。下面展示了两个480×640大
7、小的样板图像,并在数字车牌字符旁边写了一些文字,例如模型车辆,制作者标签等。图3:后面观看汽车(1)图4:后面观看汽车(2)B:这一步骤是是假设车牌区域在图像中心,该图像被转换为相应的灰度图像。然后切割图像以便从被捕图像中中移除边缘区域。我们从每一边以60行180列的大小切割图像,切割时还能减小图像噪声。如此我们得到一个噪声更小尺寸更小的图像用于处理。图5由图3切割而来,图6由图4切割而来。图5:灰度图像图6:灰度图像C
此文档下载收益归作者所有