A Particle Algorithm for Sequential Bayesian .pdf

A Particle Algorithm for Sequential Bayesian .pdf

ID:33746818

大小:309.51 KB

页数:11页

时间:2019-02-28

A Particle Algorithm for Sequential Bayesian .pdf_第1页
A Particle Algorithm for Sequential Bayesian .pdf_第2页
A Particle Algorithm for Sequential Bayesian .pdf_第3页
A Particle Algorithm for Sequential Bayesian .pdf_第4页
A Particle Algorithm for Sequential Bayesian .pdf_第5页
资源描述:

《A Particle Algorithm for Sequential Bayesian .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、326IEEETRANSACTIONSONSIGNALPROCESSING,VOL.50,NO.2,FEBRUARY2002AParticleAlgorithmforSequentialBayesianParameterEstimationandModelSelectionDominicS.LeeandNicholasK.K.ChiaAbstract—Wedescribeaparticlealgorithmforthesequentialperformtheestimationsequentially,updatingtheestimateofBayesianestim

2、ationofunknownstaticparameters.Thealgorithmaseachmeasurementbecomesavailable.combinessequentialimportancesampling(SIS)andMarkovchainBydescribingimperfectionsoruncertaintiesinthephysicalMonteCarlo(MCMC)toachievecomputationalefficiencyandsta-processesusingprobabilitymodels,thecompletedescr

3、iptionofbility.Initsmostgeneralform,thealgorithmhasthreecompo-nents:i)SIS;ii)arejuvenationtest;andiii)MCMC.Measure-probabilisticobjectsisprovidedbydistributions.Henceforth,mentsareprocessedsequentially(withanartificial“time-line”ifweassumethatalldistributionsarecontinuoussothattheirthere

4、isnonaturaloneassociatedwiththemeasurements)bySIS,associateddensitiesexist.Inthediscretecase,massfunctionswhichiscomputationallyinexpensive.Aftereachmeasurementisshouldreplacedensities,andsummationsshouldreplaceinte-processed,therejuvenationtestcheckswhethertheresultingSISgralswhereverap

5、propriate.Forgenericrandomvectorsandparticleshavetoberejuvenated.Whenindicatedbythetest,theparticlesarecompletelyrejuvenatedbyMCMC,whichremoves,weusetodenotethedensityof,andletde-errorsthataccumulatefromSISduetothefinitenumberofpar-notetheconditionaldensityofgiven.Withthesenotationsticle

6、s,thusensuringstability.Wheneverpossible,theSISparticlesandletting,thesolutionsthatweseekarecanbeusedtoadvantageintheMCMC.Thereisflexibilityinthe,.choiceoftherejuvenationtestaswellastheMCMCmethod,withWehavethreemotivationsforconsideringsequentialparam-potentialtoincreasetheusefulnessofth

7、ealgorithm.Inparticular,byusingreversible-jumpMCMCwithmultiplemodels,thealgo-eterestimation.First,thereareproblemsthatcanbeformulatedrithmcanperformsimultaneousmodelselectionandparameteres-ashavingparametersonlyandforwhichon-lineestimatesoftimation.Inthispaper,weusearejuv

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。