14勾股定理全章教案

ID:33549206

大小:222.50 KB

页数:14页

时间:2019-02-27

14勾股定理全章教案_第1页
14勾股定理全章教案_第2页
14勾股定理全章教案_第3页
14勾股定理全章教案_第4页
14勾股定理全章教案_第5页
资源描述:

《14勾股定理全章教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。二、教学重点、难点:重点:探索和验证勾股定理过

2、程;难点:通过面积计算探索勾股定理。三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。2.自主探索,合作交流活动一:动脑想一想小明用一边长为的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为),你能知道斜边的

3、长吗?③观察图形,并填空:⑴正方形P的面积为,正方形Q的面积为,正方形R的面积为。⑵你能发现图中正方形P、Q、R的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向)(图中每一小方格表示)⑴正方形P的面积为,正方形Q的面积为,正方形R的面积为。⑵正方形P、Q、R的面积之间的关系是什么?⑶你会用直角三角形的边长表示正方形P、Q、R的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。

4、试一试:①在方格图中,画出两条直角边分别为、的直角三角形,②再用刻度尺量出斜边长,③验证刚才的结论对这个直角三角形是否成立?让学生自己总结,并用符号语言、文字语言表达勾股定理的内容。3.验证定理,拓展提高请你利用手中的直角三角形纸片,通过拼图来验证刚才大家的发现拼一拼:给出4个全等的直角三角形纸片,拼一拼,摆一摆,看看能否得到一个以C为一边的正方形?(介绍赵爽弦图和2002ICM标志)4.运用新知,体验成功例1.Rt△ABC中,=90°,AB=C,AC=b,BC=a⑴已知AC=6,BC=8,求AB.⑵已知

5、=15,=9,求.(提醒学生注意边的位置)例2:看图填空(图中的三角形都是直角三角形,四边形都为正方形)==正方形C的面积为5.反馈练习,巩固新知一、判断①直角三角形中,两边的平方和等于第三边的平方()②Rt△ABC中,,,则()二、1.在Rt△ABC中,,,,①若,,则.②若,,则.③若,,则,.2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长是,则正方形A、B、C、D的面积和是。3.生活中的数学——你知道吗?小红家新买了一台29英寸(74cm)的电视机,小红量了电视机

6、的屏幕后,发现屏幕只有58cm长和46cm宽,他认为营业员搞错了,你同意他的想法吗?你能作出合理的解释吗?6.课堂小结:师生一起回顾本节知识,主要是让学生回忆学到了哪些知识和方法,教师最后再作补充。(1数学家大会所用标志。2勾股定理是宇宙语言。3同学们,学了今天的课后,如果你对勾股定理另有自己的想法和证法,请你告诉我)7.作业布置)七、教后记:§17、1勾股定理(二)一、教学目标1、会用勾股定理进行简单的计算。2、树立数形结合的思想、分类讨论思想。二、重点、难点1、重点:勾股定理的简单计算。2、难点:勾股

7、定理的灵活运用。3、难点的突破方法:⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程

8、度。三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《14勾股定理全章教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。二、教学重点、难点:重点:探索和验证勾股定理过

2、程;难点:通过面积计算探索勾股定理。三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。2.自主探索,合作交流活动一:动脑想一想小明用一边长为的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为),你能知道斜边的

3、长吗?③观察图形,并填空:⑴正方形P的面积为,正方形Q的面积为,正方形R的面积为。⑵你能发现图中正方形P、Q、R的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向)(图中每一小方格表示)⑴正方形P的面积为,正方形Q的面积为,正方形R的面积为。⑵正方形P、Q、R的面积之间的关系是什么?⑶你会用直角三角形的边长表示正方形P、Q、R的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。

4、试一试:①在方格图中,画出两条直角边分别为、的直角三角形,②再用刻度尺量出斜边长,③验证刚才的结论对这个直角三角形是否成立?让学生自己总结,并用符号语言、文字语言表达勾股定理的内容。3.验证定理,拓展提高请你利用手中的直角三角形纸片,通过拼图来验证刚才大家的发现拼一拼:给出4个全等的直角三角形纸片,拼一拼,摆一摆,看看能否得到一个以C为一边的正方形?(介绍赵爽弦图和2002ICM标志)4.运用新知,体验成功例1.Rt△ABC中,=90°,AB=C,AC=b,BC=a⑴已知AC=6,BC=8,求AB.⑵已知

5、=15,=9,求.(提醒学生注意边的位置)例2:看图填空(图中的三角形都是直角三角形,四边形都为正方形)==正方形C的面积为5.反馈练习,巩固新知一、判断①直角三角形中,两边的平方和等于第三边的平方()②Rt△ABC中,,,则()二、1.在Rt△ABC中,,,,①若,,则.②若,,则.③若,,则,.2.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长是,则正方形A、B、C、D的面积和是。3.生活中的数学——你知道吗?小红家新买了一台29英寸(74cm)的电视机,小红量了电视机

6、的屏幕后,发现屏幕只有58cm长和46cm宽,他认为营业员搞错了,你同意他的想法吗?你能作出合理的解释吗?6.课堂小结:师生一起回顾本节知识,主要是让学生回忆学到了哪些知识和方法,教师最后再作补充。(1数学家大会所用标志。2勾股定理是宇宙语言。3同学们,学了今天的课后,如果你对勾股定理另有自己的想法和证法,请你告诉我)7.作业布置)七、教后记:§17、1勾股定理(二)一、教学目标1、会用勾股定理进行简单的计算。2、树立数形结合的思想、分类讨论思想。二、重点、难点1、重点:勾股定理的简单计算。2、难点:勾股

7、定理的灵活运用。3、难点的突破方法:⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程

8、度。三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭