欢迎来到天天文库
浏览记录
ID:33466950
大小:608.00 KB
页数:14页
时间:2019-02-26
《第三节(几_何_概_型)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三节几_何_概_型[知识能否忆起]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的概率公式在几何概型中,事件A的概率的计算公式如下:P(A)=.[小题能否全取]1.(教材习题改编)设A(0,0),B(4,0),在线段AB上任投一点P,则
2、PA
3、<1的概率为( )A. B.C.D.解析:选C 满足
4、PA
5、<1的区间长度为1,故所求其概率为.2.(2012·衡阳模拟)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影
6、部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 中奖的概率依次为P(A)=,P(B)=,P(C)=,P(D)=.3.分别以正方形ABCD的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )A.B.页脚C.D.解析:选B 设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,则阴影区域的面积为2π-4,所以所求概率为P==.4.有一杯2升的水,其中含一个细菌,用一个小杯从水中取0.1升水,则此小杯中含有这个细菌的概率是________.
7、解析:试验的全部结果构成的区域体积为2升,所求事件的区域体积为0.1升,故P=0.05.答案:0.055.如图所示,在直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT内的概率为________.解析:如题图,因为射线OA在坐标系内是等可能分布的,则OA落在∠yOT内的概率为=.答案:1.几何概型的特点:几何概型与古典概型的区别是几何概型试验中的可能结果不是有限个,它的特点是试验结果在一个区域内均匀分布,故随机事件的概率大小与随机事件所在区域的形状位置无关,只与该区域的大小有关.2.几何概型中,线段的端点、图形的边界是
8、否包含在事件之内不影响所求结果.与长度、角度有关的几何概型典题导入[例1] (2011·湖南高考)已知圆C:x2+y2=12,直线l:4x+3y=25.(1)圆C的圆心到直线l的距离为________;(2)圆C上任意一点A到直线l的距离小于2的概率为________.[自主解答] (1)根据点到直线的距离公式得d==5;(2)设直线4x+3y=c到圆心的距离为3,则=3,取c=15,则直线4x+3y页脚=15把圆所截得的劣弧的长度和整个圆的周长的比值即是所求的概率,由于圆半径是2,则可得直线4x+3y=15截得的圆弧所对的圆心角为60°,故所求的概率
9、是.[答案] 5 本例条件变为:“已知圆C:x2+y2=12,设M为此圆周上一定点,在圆周上等可能地任取一点N,连接MN.”求弦MN的长超过2的概率.解:如图,在图上过圆心O作OM⊥直径CD.则MD=MC=2.当N点不在半圆弧CM上时,MN>2.所以P(A)==.由题悟法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.确定点的边界位置是解题的关键.以题试法1.(1)(2012·福建四校联考)已知A是圆上固定的一点,在圆上其他位置上任取一点A′,则AA′的长度小于半径的概率为________.(2)在Rt△
10、ABC中,∠BAC=90°,AB=1,BC=2.在BC边上任取一点M,则∠AMB≥90°的概率为________.解析:(1)如图,满足AA′的长度小于半径的点A′位于劣弧BA上,其中△ABO和△ACO为等边三角形,可知∠BOC=,故所求事件的概率P==.(2)如图,在Rt△ABC中,作AD⊥BC,D为垂足,由题意可得BD=,且点M在BD上时,满足∠AMB≥90°,故所求概率P===.答案:(1) (2)页脚与面积有关的几何概型典题导入[例2] (1)(2012·湖北高考)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OA
11、B内随机取一点,则此点取自阴影部分的概率是( )A.1- B.-C.D.(2)已知不等式组表示平面区域M,若点P(x,y)在所给的平面区域M内,则点P落在M的内切圆内的概率为( )A.πB.(3-2)πC.(2-2)πD.π[自主解答] (1)法一:设分别以OA,OB为直径的两个半圆交于点C,OA的中点为D,如图,连接OC,DC.不妨令OA=OB=2,则OD=DA=DC=1.在以OA为直径的半圆中,空白部分面积S1=+×1×1-=1,所以整体图形中空白部分面积S2=2.又因为S扇形OAB=×π×22=π,所以阴影部分面积为S3=π-2.所
12、以P==1-.法二:连接AB,设分别以OA,OB为直径的两个半圆交于点C,令OA=2.由题意知
此文档下载收益归作者所有