欢迎来到天天文库
浏览记录
ID:33434291
大小:3.18 MB
页数:87页
时间:2019-02-25
《信道极化和极化码极化码与ldpc码级联关键技术研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、分类号:__________密级:___________UDC:__________编号:___________工学硕士学位论文信道极化和极化码:极化码与LDPC码级联关键技术研究硕士研究生:OlogunOluwaseunOlusesan指导教师:刘彤副教授学位级别:工学硕士学科、专业:通信与信息系统所在单位:信息与通信工程学院论文提交日期:2014年6月11日论文答辩日期:2014年6月17日学位授予单位:哈尔滨工程大学万方数据ClassifiedIndex:U.D.C:ADissertationfortheDegreeofM.E
2、ngChannelPolarizationandPolarCodes:AStudyofthekeytechnologiesandLowDensityParityCheckCodes(LDPC)ConcatenationCandidate:OlogunOluwaseunOlusesanSupervisor:AssociateProf.LiuTongAcademicDegreeAppliedfor:MasterofEngineeringSpecialty:CommunicationandInformationSystemsDateofS
3、ubmission:Jun.11,2014DateofOralExamination:Jun.17,2014University:HarbinEngineeringUniversity万方数据万方数据哈尔滨工程大学学位论文原创性声明本人郑重声明:本论文的所有工作,是在导师的指导下,由作者本人独立完成的。有关观点、方法、数据和文献的引用已在文中指出,并与参考文献相对应。除文中已注明引用的内容外,本论文不包含任何其他个人或集体已经公开发表的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法
4、律结果由本人承担。作者(签字):日期:年月日哈尔滨工程大学学位论文授权使用声明本人完全了解学校保护知识产权的有关规定,即研究生在校攻读学位期间论文工作的知识产权属于哈尔滨工程大学。哈尔滨工程大学有权保留并向国家有关部门或机构送交论文的复印件。本人允许哈尔滨工程大学将论文的部分或全部内容编入有关数据库进行检索,可采用影印、缩印或扫描等复制手段保存和汇编本学位论文,可以公布论文的全部内容。同时本人保证毕业后结合学位论文研究课题再撰写的论文一律注明作者第一署名单位为哈尔滨工程大学。涉密学位论文待解密后适用本声明。本论文(□在授予学位后即可
5、□在授予学位12个月后□解密后)由哈尔滨工程大学送交有关部门进行保存、汇编等。作者(签字):导师(签字):日期:年月日年月日万方数据摘要信息理论中一个主要的内容(或不足)是要在不确定信道上实现高效、可靠的通信,这可以通过信道编码来实现。极化码是由Arikan基于“信道极化”现象提出的一种新的信道编码方法。因为极化码的显式构建和高效的编码以及解码算法,使其成为编码历史上的一个重大突破。它们已经被证明可以使用低复杂度的编码器和解码器来实现任意规定的二进制离散无记忆信道(Binary-inputDiscreteMemorylessChan
6、nel,B-DMC)的对称能力。它们的分组差错概率呈以块长度的平方根为指数的形式下降。递归合并和拆分独立的二进制离散无记忆信道,导致一些极化信道成为无差错或无噪声信道,实现了对称的容量,而其它的近似可等效为纯噪声信道。这些极化信道为信道编码提供了很好的条件,这样,我们就只需要在无噪声信道中以一个特定的速度(1)传送信息位,而修正符号以另一速率(0)通过噪声信道。首先,分析极化信道时我们需要考虑两个重要的参数:对称能力和巴氏参数。信道的类型通常是在通信代码设计时加以考虑的。在本文中,首先分析了信道极化和极化编码的基本技术原理,重点分析
7、了它们在不同信道中的性能。然后描述了基于极化码和低密度奇偶校验码(LowDensityParityCheckCode,LDPC)的直接或串行级联码。最后对同时使用级联极化码和低密度奇偶校验码两种码的性能与仅使用一种码时的性能进行比较,并在仿真中模拟不同的信道进行分析。关键词:极地码,信道极化,B-DMC,串行级联,对称的能力,巴氏参数,LDPC码万方数据ABSTRACTOnemajoraspectordrawbackofinformationtheoryisrealizinganefficientandreliablecommuni
8、cationoveranunreliablechannelandthishasbeenwidelysolvedbychannelcoding.Polarcodingisanewerrorcorrectiontechniquebased
此文档下载收益归作者所有