欢迎来到天天文库
浏览记录
ID:33201433
大小:43.36 KB
页数:4页
时间:2019-02-22
《初中代数公式汇编》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、初中代数公式汇编 1.数与式 (1)实数 实数的性质: ①实数a的相反数是—a,实数a的倒数是(a≠0); ②实数a的绝对值: ③正数大于0,负数小于0,两个负实数,绝对值大的反而小。 二次根式: ①积与商的方根的运算性质: (a≥0,b≥0); (a≥0,b>0); ②二次根式的性质: (2)整式与分式 ①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数); ②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n); ③
2、幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数); ④零指数:(a≠0); ⑤负整数指数:(a≠0,n为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即; ⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即; 分式 ①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即;,其中m是不等于零的代数式; ②分式的乘法法则:; ③分式的除法法则:; ④分式的乘方法则:(n为正整数); ⑤
3、同分母分式加减法则:; ⑥异分母分式加减法则:; 2.方程与不等式 ①一元二次方程(a≠0)的求根公式: ②一元二次方程根的判别式:叫做一元二次方程(a≠0)的根的判别式: 方程有两个不相等的实数根;方程有两个相等的实数根; 方程没有实数根; ③一元二次方程根与系数的关系:设、是方程(a≠0)的两个根,那么+=,=; 不等式的基本性质: ①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除
4、以)同一个负数,不等号的方向改变; 3.函数 一次函数的图象:函数y=kx+b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线; 一次函数的性质:设y=kx+b(k≠0),则当k>0时,y随x的增大而增大;当k<0,y随x的增大而减小; 正比例函数的图象:函数的图象是过原点及点(1,k)的一条直线。 正比例函数的性质:设,则: ①当k>0时,y随x的增大而增大; ②当k<0时,y随x的增大而减小; 反比例函数的图象:函数(k≠0)是双曲线; 反比例函数性质:设(k≠
5、0),如果k>0,则当x>0时或x<0时,y分别随x的增大而减小;如果k<0,则当x>0时或x<0时,y分别随x的增大而增大; 二次函数的图象:函数的图象是对称轴垂直于x轴的抛物线; ①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下; ②对称轴:直线; ③顶点坐标(; ④增减性:当a>0时,如果,则y随x的增大而减小,如果,则y随x的增大而增大;当a<0时,如果,则y随x的增大而增大,如果,则y随x的增大而减小;
此文档下载收益归作者所有