arc length - emaths弧长emaths

arc length - emaths弧长emaths

ID:33189326

大小:209.50 KB

页数:4页

时间:2019-02-21

arc length - emaths弧长emaths_第1页
arc length - emaths弧长emaths_第2页
arc length - emaths弧长emaths_第3页
arc length - emaths弧长emaths_第4页
资源描述:

《arc length - emaths弧长emaths》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、ArcLengthAslongasyou’resatisfiedwithyourcalculusskills,arclengthisamatteroflogic.Tothe‘somewhere’onthispagethereisdiagramofagraphunderultra-magnificationanditshowsanapproximationtothelengthofasmallpieceofthecurve,.YoushouldnoticethatthisapproximationisasimplecaseofPythagorasan

2、dthat.Whatthismeansintermsofdifferentiationisthatifismadesmallerandsmallerandsmaller,untilit’ssosmallthatamoebaareusingitasflossthenwontbe‘approximately’,itwillbe.Atthispointthenicecurlydelta()signismadeintoa‘d’outofconventionsothat…Ifeverythingisdividedthroughbyandrearrangedy

3、ouwillfindyourselfwiththeequation:Noticeanythingfamiliar?It’sjustanordinaryolddifferentialisn’tit?Youcanintegrateitwithrespecttotoarriveat:Nowanexample:Findthearclengthofthecurvewithequationbetweenand.Isuggestwestartbyfinding,whichwecandobydifferentiatingtheequationtoseethat……

4、andthereforethat……intothisequationIcansubstitutein(thecurveequation)togetthatKnowingthesefacts,IcanbeginthemutationprocessofthearclengthintegraltoseethatI’llbefinding:Nobody,ifthey’rehonest,likestoseea4hangingbelowalikethat,soI’mjustgoingtonudgethelittlefellaoutoftheintegralin

5、abitofrearranging,asso…I’malsogoingtomakethesubstitution-whereandthenchangethelimitsoftheintegralsoshowthat:whichisequaltoNowtherestisasimpleintegrationjob;youshouldfindthat:…andthatyourgrandanswerisTakingthisalittlefurther–thelengthofanarcinparametricformcanbefoundbystartingf

6、romagain,butinsteadofdividingthroughbyyoushoulddividethroughbyandrearrangethingstogetthat:andthatI’llwarnyouthoughthatalotofparametricformquestions,oratleasttheonesinthebook,usuallyendupwithyouneedingtointegratesomethinglikewhereyouwillneedtousethesubstitution…thingsgetalittle

7、taxingafterthat,unlessyouremembertheintegralbyheart.Nowwecanuseournewarclengthknowledgeandapplyittosomethingslightlydifferentcalled‘areaofsurfacerevolution’.Itgoesalittlesomethinglikethis:Thisisjustlikevolumeofrevolutionbutinsteadlooksatthesurfacearea.Thesurfaceareaofacylinder

8、youshouldknowtobe,whereristheradiusofthecrosssectionalareaand

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。