人工神经网络作业

人工神经网络作业

ID:32924336

大小:120.50 KB

页数:8页

时间:2019-02-17

人工神经网络作业_第1页
人工神经网络作业_第2页
人工神经网络作业_第3页
人工神经网络作业_第4页
人工神经网络作业_第5页
资源描述:

《人工神经网络作业》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、人工神经网络在材料领域的应用人工神经网络在材料领域的应用引言长期以来,对材料研究采用的是依赖大量试验并进行大面积筛选的方法。这需要消耗大量人力和物理资源及时间。由于大量尚未理论化的经验和试验规律的存在,在相当一段时间内还不可以完全脱离经验和试验来进行研究。于是,人们将目光转向理论付诸的材料研究。将先进的计算机技术应用于现代材料研究中,通过较少的实验获得较为理想的材料,达到事半功倍的效果。材料设计的自由度大,影响因素多,利用传统的数学建模方法来研究结构。工艺与性能之间的关系,存在许多困难,而且简化求解

2、问题的数学和力学模型,往往是模型本身存在较大的局限性,难以满足工程技术的需求,人工神经网络的发展,为材料的研究提供了新的有效途径[1]。人工神经网络(ArtificalNeuralNetworks)是用来模拟人脑结构及智能特点的一个国际前沿研究领域,它具有独特的大规模并行分布处理及学习联想能力,力图模拟生物神经系统。与其他传统模型相比,它具有以下独特的优点:较强的非线性问题处理能力;对噪声和不完整信息具有低敏感性,抗噪声能力好;在运行过程中依动态数据库对周围环境具有自适应能力而自我调整、完善、发展使

3、误差达到最小,以提高运行精度;能很好的完成多变量模式识别;能对过程实现在线响应,在系统中可以在线使用。由于他们的综合特点和人类的智能相似,故具有大规模并行、分布式存贮和处理、自组织、自适应的学习能力,适用于处理需要同时考虑许多因素和条件的不精确和模糊的信息问题,可以解决专家系统和统计分析方法不易解决的问题[2]。正是因为具有上述优点,人工神经网络在信号处理、模式识别、目标跟踪、机器人控制、专家系统、组合优化、网络管理等众多领域的应用中获得了引人注目的成果。人工神经网络是一门高度综合的交叉学科,已在生

4、物、微电子、数学、物理、化学化工和材料等学科中得到了广泛的应用。在材料科学与工程领域中,人工神经网络在处理材料科学的许多问题中发挥了巨大作用,已普遍用于材料设计与成分优化、材料的智能加工与控制、材料加工工艺的优化、材料相变规律的研究与相变点的预测、材料性能及缺陷预测等方面,涉及高分子,金属、合金和无机非金属等多种材料,并取得了良好效果[3]。1人工神经网络的概念与模型1.1概念人工神经网络(ArtificialNeural8人工神经网络在材料领域的应用Network,简称ANN)是由大量简单的称之为

5、神经元(Neurons)的处理单元以某种拓扑结构广泛地相互联接而构成的复杂的、自适应、自组织的非线性的动力学系统,具有学习功能、记忆功能、计算功能以及智能处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。他是在对以人脑为主要代表的生物神经系统的组织结构和行为特征进行研究的基础上,试图通过模拟人类神经系统对信息进行加工、记忆和处理的方式,设计出的一种具有人脑风格的信息处理系统。它更侧重于对人脑某些特定功能的模拟,强调大量神经元之间的协同作用。通过学习的方法解决问题是人工神经网络

6、的重要特征[3]。人工神经网络按其结构不同可分为:前向多层前馈神经网络(BP网)、反馈网络(Hopfield网)、自组织竞争人工神经网络(Kohonen网)、径向基函数网络(RBF网)等,尽管网络的具体类型很多,但其基本类型都是由大量的计算单元(神经元)广泛相互理解而构成的并行处理网络。在材料科学与工程领域,BP网应用的最为成功和广泛,是对映射能力和学习算法研究得最为深人的网络。该神经网络具有很强的自组织、自适应、联想记忆及推广能力,对有代表性例子的学习和训练,能够掌握事物的本质特征,可以解决许多问

7、题。1.2人工神经网络的基本结构无论何种神经网络,均是由大量人工神经元相互连接而组成,人工神经元是人工神经网络的基本单元。它的原理如图1所示。其中,为第个外部输入信号;为神经元到神经元之间的连接权重;为神经元的阈值;f为激励函数(传递函数);为神经元的输出。神经元按如下方式完成其功能:(1)神经元各输入端接收信号;(2)神经元接收到各输入端权重和的总信息,各权重和是一个线性函数;(3)神经元的细胞体接收到的各输入端权重和与阈值相比较,当大于阈值时,神经元激励,在激励函数的作用下产生输出信号,反之处于

8、抑制状态。图1人工神经网络基本原理图1.3模型8人工神经网络在材料领域的应用人工神经网络的模型及算法,一般主要依据网络的准确性、自适应性、收敛性及可推广性等四条原则进行选择。人工神经网络具有明显的层次结构,它主要由处理单元(神经元)、联接权重、层(输人层、隐层和输出层)、阀值和转移函数组成等。输人层的处理单元将输人值转人相邻的联接权重,隐层和输出层的处理单元将它们的输人值求和并根据转移函数计算输出值;联接权重是将神经网络中的处理单元联系起来,其值是随各处理单元的联接程

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。