人工神经网络

人工神经网络

ID:21096408

大小:5.04 MB

页数:90页

时间:2018-10-17

人工神经网络_第1页
人工神经网络_第2页
人工神经网络_第3页
人工神经网络_第4页
人工神经网络_第5页
资源描述:

《人工神经网络》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人工神经网络中国科学院自动化研究所吴高巍gaowei.wu@ia.ac.cn2016-11-29联结主义学派又称仿生学派或生理学派认为人的思维基元是神经元,而不是符号处理过程认为人脑不同于电脑核心:智能的本质是联接机制。原理:神经网络及神经网络间的连接机制和学习算法麦卡洛可(McCulloch)皮茨(Pitts)什么是神经网络所谓的人工神经网络就是基于模仿生物大脑的结构和功能而构成的一种信息处理系统(计算机)。个体单元相互连接形成多种类型结构的图循环、非循环有向、无向自底向上(Bottom-Up)AI起源于生物神经系统

2、从结构模拟到功能模拟仿生人工神经网络内容生物学启示多层神经网络Hopfield网络自组织网络生物学启示神经元组成:细胞体,轴突,树突,突触神经元之间通过突触两两相连。信息的传递发生在突触。突触记录了神经元间联系的强弱。只有达到一定的兴奋程度,神经元才向外界传输信息。生物神经元神经元神经元特性信息以预知的确定方向传递一个神经元的树突-细胞体-轴突-突触-另一个神经元树突时空整合性对不同时间通过同一突触传入的信息具有时间整合功能对同一时间通过不同突触传入的信息具有空间整合功能神经元工作状态兴奋状态,对输入信息整合后使细胞膜

3、电位升高,当高于动作电位的阈值时,产生神经冲动,并由轴突输出。抑制状态,对输入信息整合后使细胞膜电位降低,当低于动作电位的阈值时,无神经冲动产生。结构的可塑性神经元之间的柔性连接:突触的信息传递特性是可变的——学习记忆的基础神经元模型从生物学结构到数学模型人工神经元M-P模型θx1x2xnyω1ω2ωnInputOutputThresholdMcCllochandPitts,Alogicalcalculusoftheideasimmanentinnervousactivity,1943f:激活函数(Activation

4、Function)g:组合函数(CombinationFunction)WeightedSumRadialDistance组合函数(e)(f)ThresholdLinearSaturatingLinearLogisticSigmoidHyperbolictangentSigmoidGaussian激活函数人工神经网络多个人工神经元按照特定的网络结构联接在一起,就构成了一个人工神经网络。神经网络的目标就是将输入转换成有意义的输出。生物系统中的学习自适应学习适应的目标是基于对环境信息的响应获得更好的状态在神经层面上,通过突

5、触强度的改变实现学习消除某些突触,建立一些新的突触生物系统中的学习Hebb学习律神经元同时激活,突触强度增加异步激活,突触强度减弱学习律符合能量最小原则保持突触强度需要能量,所以在需要的地方保持,在不需要的地方不保持。ANN的学习规则能量最小ENERGYMINIMIZATION对人工神经网络,需要确定合适的能量定义;可以使用数学上的优化技术来发现如何改变神经元间的联接权重。ENERGY=measureoftaskperformanceerror两个主要问题结构Howtointerconnectindividualuni

6、ts?学习方法HowtoautomaticallydeterminetheconnectionweightsorevenstructureofANN?SolutionstothesetwoproblemsleadstoaconcreteANN!人工神经网络前馈结构(FeedforwardArchitecture)-withoutloops-static反馈/循环结构(Feedback/RecurrentArchitecture)-withloops-dynamic(non-lineardynamicalsystems)

7、ANN结构GeneralstructuresoffeedforwardnetworksGeneralstructuresoffeedbacknetworks通过神经网络所在环境的模拟过程,调整网络中的自由参数Learningbydata学习模型Incrementalvs.Batch两种类型Supervisedvs.UnsupervisedANN的学习方法若两端的神经元同时激活,增强联接权重UnsupervisedLearning学习策略:HebbrianLearning最小化实际输出与期望输出之间的误差(Supervi

8、sed)-DeltaRule(LMSRule,Widrow-Hoff)-B-PLearningObjective:Solution:学习策略:ErrorCorrection采用随机模式,跳出局部极小-如果网络性能提高,新参数被接受.-否则,新参数依概率接受LocalMinimumGlobalMinimum学习策略:Stochast

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。