人工神经网络论文

人工神经网络论文

ID:16515135

大小:502.00 KB

页数:25页

时间:2018-08-13

人工神经网络论文_第1页
人工神经网络论文_第2页
人工神经网络论文_第3页
人工神经网络论文_第4页
人工神经网络论文_第5页
资源描述:

《人工神经网络论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于神经网络的地震预测人工神经网络学号:080081002007学生所在学院:研究生学院学生姓名:李建建任课教师:聂文滨教师所在学院:自动化学院2009年11月第25页基于神经网络的地震预测目录第一部分:绪论41.1人工神经网络的定义41.2人工神经网络的基本原理41.3生物神经元41.4人工神经元模型51.5人工神经网络模型61.6.常见神经元响应函数81.7.神经网络基本学习算法8第二部分:反向传播网络102.1BP网络102.1.1BP网络主要应用:102.1.2BP网络特点102.1.3多层BP网络简介102.2三层BP网络112.2.1三层BP网络结构

2、图112.2.2三层BP网络学习算法112.2.3三层BP网络设计需要考虑的问题11第三部分:自适应竞争神经网络133.1自组织网络133.1.1网络类型133.1.2网络学习规则133.2竞争网络143.2.1网络结构143.2.2竞争网络原理143.2.3网络工作方式153.2.4网络训练153.2.5竞争网络的局限性15第四部分:地震预报的MATLAB实现154.1基于人工神经网络的地震预测研究背景154.2模型的建立164.3自适应竞争网络对地震等级进行预测174.3.1数据处理174.3.2自适应竞争网络设计174.4BP网络对地震的大小进行预测184

3、.4.1数据处理184.4.2BP网络的设计19第五部分:作业21第25页基于神经网络的地震预测第一部分:绪论1.1人工神经网络的定义人工神经网络的定义不是统一的,T.Koholen对人工神经网络的定义“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。”1.2人工神经网络的基本原理人工神经网络(articlesneuralnetwork,ANN)结构和工作机理基本上以人脑的组织结构(大脑神经元网络)和活动规律为背景的,它反映了人脑的某些基本特征,但并不是要对人脑部分的真实再现,可以说它是某

4、种抽象、简化或模仿。1.3生物神经元神经元是大脑处理信息的基本单元,人脑大约由1011个神经元组成,神经元互相连接成神经网络。神经元以细胞体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞,其形状很像一棵枯树的枝干。主要由细胞体、树突、轴突和突触(Synapse,又称神经键)组成。第25页基于神经网络的地震预测图1.1生物神经元的示意图生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学

5、物质,突触有两种类型,兴奋性突触和抑制性突触。前者产生正突触后电位,后者产生负突触后电位。1.4人工神经元模型1通用模型P1P2PnW1W2WnaΣθf第25页基于神经网络的地震预测2求和操作3响应函数y=σ(s)1.5人工神经网络模型1前向网络(a)2从输出到输入有反馈的前向网络(b)第25页基于神经网络的地震预测3用来存储某种模式序列,层内互连前向网络(c)4限制层内同时动作的神经元;分组功能相互结合型网络(d)第25页基于神经网络的地震预测1.6.常见神经元响应函数a)阈值单元σ(s)=(b)线性单元y=σ(s)=s(c)(d)非线性单元:Sigmoid函

6、数1.7.神经网络基本学习算法1.7.1有教师学习(监督学习)第25页基于神经网络的地震预测神经网络(学习系统)误差分析误差信号et期望输出P输入a期望输出1.7.2无教师学习(无监督学习)神经网络(学习系统)P输入a期望输出1.7.3强化学习(再励学习)神经网络(学习系统)外部环境评价信息P输入a期望输出第25页基于神经网络的地震预测第二部分:反向传播网络2.1BP网络反向传播网络(Back-PropagationNetwork,简称BP网络)是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络。权值的调整采用反向传播(Back-propagat

7、ion)的学习算法,它是一种多层前向反馈神经网络,其神经元的变换函数是S型函数。输出量为0到1之间的连续量,它可实现从输入到输出的任意的非线性映射。2.1.1BP网络主要应用:(1)函数逼近:用输入矢量和相应的输出矢量训练一个网络逼近一个函数(2)模式识别和分类:用一个特定的输出矢量将它与输入矢量联系起来;把输入矢量以所定义的合适方式进行分类;(3)数据压缩:减少输出矢量维数以便于传输或存储(4)具有将强泛化性能:使网络平滑地学习函数,使网络能够合理地响应被训练以外的输入泛化性能只对被训练的输入/输出对最大值范围内的数据有效,即网络具有内插值特性,不具有外插值性

8、。超出最大训练值的输入必

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。