欢迎来到天天文库
浏览记录
ID:32750489
大小:59.69 KB
页数:6页
时间:2019-02-15
《基于限制性线性光谱分解模型高光谱影像混合像元分解》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、基于限制性线性光谱分解模型高光谱影像混合像元分解摘要:高光谱影像的光谱分辨率在10nm以下,会产生大量的混合像元,因此解决混合像元分解问题对处理高光谱图像有着重要作用。本文主要论述了高光谱混合像元分解。其中包括:混合像元分解的概念和物理基础,混合像元线性模型,线性光谱分解模型。利用线性光谱分解模型进行混合像元分解时有两个步骤:1、端元的提取。2、混合像元线性分解。本文将采用纯像元指数法提取端元,采用限制性线性混合模型进行混合像元分解,并以实例进行展现。关键词:高光谱遥感混合像元分解线性光谱分解模型端元提取纯像元指数法0、引言遥感影
2、像中的像元很少是由单一均匀的地表覆盖类组成,一般都是几种地物类型的混合体。因此影像中像元的光谱特征并不是单一地物的光谱特征,而是几种地物光谱特征的混合反映,而每个像元则仅用一个信号记录这些“异质”成分。若该像元仅包含一种类型,则为纯像元,它所记录的正是该类型光谱响应特征若该像元包含不止一种土地覆盖类型,则形成混合像元[1]。1、混合像元光谱模型线性模型[2],它基于以下假设:在瞬时视场下,各组分光谱线性混合,其比例由相关光谱的丰度决定。通过分析残差,使残差最小,完成对混合像元的分解。因此,第i波段像元反射率可以表示为:(1)式中:
3、i=l,2,…,n;j=l,2,…,m;yi是混合像元的反射率;pij表示第i个波段第j个端元组分的反射率;fj是该像元第j个端元组分的丰度;是第i波段的误差;n表示波段数;m表示选定的端元组分数。2、采用线性光谱分解模型分解混合像元线性光谱解混是在高光谱图像分类中针对混合像元经常采用的一种方法[3],该方法由两步构成,第一步是提取“纯”地物的光谱,即端元提取;第二步是用端元的线性组合来表示混合像元,即混合像元分解。2.1端元提取纯净像元指数是一种在多波谱和高光谱影像中寻找波谱最纯净的像元的方法。通常,波谱最纯净的像元与混合端元相
4、对应。像元纯净指数通过迭代将N维散点图映射为一个随机单位向量来计算。每次映射的纯净像元被记录下来,并且每个像元被标记为纯净像元的总次数也将被记录下来。2.2混合像元分解主要方法有凸面几何学分析,滤波向量法,投影追踪法,限制性线性混合模型,空间信息辅助下的混合像元分解,在这里我们采用限制性线性混合模型。在(1)式上加上像元组分总和为1的条件时,端元组分fO的估计值可由下式方便地确定[1]:(2)式中山是一个分量都是常数1的m维列矢量。但由(2)式估计的fCLS值并不满足非负的条件,一个比较简单的办法是把fCLS中的负值去掉,再把其余
5、的值按比例拉伸到总和为lo但一般来说,这样的估计结果不可能是fO的全局最优估计。再者(2)式加上像元组分非负的条件时,对fO估计称为不等式约束的最小二乘,通常很难找到解析的方法。下面给出全限制线性混合模型的迭代算法。令,式中:为混合像元在光谱通道上测量的反射率所组成的n维列矢量;P是n行m列的矩阵,它的列是m个像元组分光谱矢量;记,,,则线性混合模型组分估计值为:,引进一个m维矢量,构造拉格朗日乘数法方程:(3)在的条件下有:(4)由此导出两个迭代方程:(6)由式(5)和(6)可以得出与的值。根据上面的基本原理可以提出这样的迭代解
6、法,其基本步骤如下:(1)初始化所需要的相关矢量和变量。(2)计算临时存放最佳端元比例的矢量并令混合像元中端元的组分比例。(3)如果各分量的值都为非负,则结束循环。(4)对于中负值分量采用提出的数值分析的方法,对其进行变换和筛选,选出合适的针对负值的变量。(5)从(3)或者(4)得到的便是全局最优估计丰度。利用上面纯像元法提取出的所有端元,釆用此迭代算法进行限制性混合像元分解,得到如图1提取出的端元分布情况。参考一些地面资料[4],初步确认各端元分别为:a明矶石,b铁长石,c高岭石,d伊利石,e硅石,f方解石,g沸石,h是分解之后
7、的误差影像。通过观察解译出的端元图和误差影像图,我们确信限制性线性混合像元分解算法是有效果的。图1每一幅图亮度最高的地方是此端元的大量分布区3、结语成功的利用线性光谱分解模型对一幅高光谱影像进行了混合像元分解。从提取的纯净像元指数图来看,纯像元指数法是有效的;从我们得到的混合像元分解图中证实了限制性分解有较广泛的实用性。从分解的混合像元端元图可以看出,分解的准确率确实不高,此方法的不足表现在以下两个问题:(1)混合像元和纯净像元的区分不明确;(2)类别的错分和误分普遍存在。要解决这两个问题,需要考虑添加其他的限制条件,比如空间信息
8、和纹理信息,把所有的限制条件考虑到,然后进行筛选,效果可能会好些。参考文献:[1]张良培,张立福•高光谱遥感[M].武汉:武汉大学出版社,2005:87-101.[2]张立福,张良培,村松加奈子等.基于高光谱卫星遥感数据的UPDM分析方法[J].武
此文档下载收益归作者所有