【7A文】新人教版高中数学必修1教案全套.doc

【7A文】新人教版高中数学必修1教案全套.doc

ID:32699307

大小:1.24 MB

页数:96页

时间:2019-02-14

【7A文】新人教版高中数学必修1教案全套.doc_第1页
【7A文】新人教版高中数学必修1教案全套.doc_第2页
【7A文】新人教版高中数学必修1教案全套.doc_第3页
【7A文】新人教版高中数学必修1教案全套.doc_第4页
【7A文】新人教版高中数学必修1教案全套.doc_第5页
资源描述:

《【7A文】新人教版高中数学必修1教案全套.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、7A版优质实用文档1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴1~20以内的所有质数;⑵我国从1991~20GG的13年内所发射的所有人造卫星;⑶金星汽车厂20GG年生产的所有汽车;⑷20GG年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹黄图盛中学20GG年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合

2、,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,G是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合967A版优质实用文档7A版优质实用文档⑴ 2,3,4⑵(2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,…⑸ 1,2,(

3、1,2),{1,2}⑹我国的小河流⑺方程G2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程G2+2G+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∈A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作NG或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,

4、c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形B锐角三角形C钝角三角形D等腰三角形(2)说出集合{1,2}与集合{G=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例1、用列举法表示下列集合:967A版优质实用文档7A版优质实用文档(1)小于10的所有自然数组成的集合;(2)方程G2=G的所有实数根组成的集合;(3)由1~20以内的所有质数组成。例2、试分别用列举法和描述法表示下列集合:(

5、1)由大于10小于20的的所有整数组成的集合;(2)方程G2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(2)只要不引起误解集合的代表元素也可省略七、小结集合的概念、表示;集合元素与集合间的关系;常用数集的记法.八、作业§1.1.2集合间的基本关系教学目的:让学生初步了解子集的概念及其表示方法,同时了解相等集合、真子集和空集的有关概念.教学重难点:1、子集、真子集的概念及它们的联系与区别;2、空集的概念以及与一般集合间的关系.教学过程:一、复习(结合提问):1.集合的概念、集合三要素2.集合的表示

6、、符号、常用数集、列举法、描述法3.关于“属于”的概念二、新课讲授(一)子集的概念967A版优质实用文档7A版优质实用文档1.实例:A={1,2,3}B={1,2,3,4,5}引导观察.结论:对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,则说:这两个集合有包含关系,称集合A为集合B的子集,记作AÍB(或BÊA),读作“A含于B”(或“B包含A”).2.反之:集合A不包含于集合B,或集合B不包含集合A,记作AËB已(或BËA)(二)空集的概念不含任何元素的集合叫做空集,记作φ,并规定:空集是任何集合的子集.(三)“相

7、等”关系1、实例:设A={G

8、G2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B(即如果AÍB同时BÍA那么A=B).2、①任何一个集合是它本身的子集.AÍA̹②真子集:如果AÍB,且A¹B那就说集合A是集合B的真子集,记作AB③空集是任何非空集合的真子集.④如果AÍB,BÍC,那么AÍC.证明:设G是A的任一元素,则GÎAAÍB,GÎB又BÍCGÎC从而AÍC同样;如果AÍB,BÍC,那么

9、AÍC(三)例题与练习例1、设集合A={1,3,a},B={1,a2-a+1}AÊB,求a的值练习1:写出集合A={a,b,c}的所有子集,并指出哪些是真子集?有多少个?̹例2、求满足{G

10、G2+2=0}MÍ{G

11、G2-1=0}的集合M.967A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。