欢迎来到天天文库
浏览记录
ID:32576105
大小:74.80 KB
页数:10页
时间:2019-02-12
《走进数学实验挖掘教学亮点》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、走进数学实验挖掘教学亮点营口市一中数学组朱玉红[摘要]:通过数学实验这种教与学的方式,致力于影响学生数学认知结构的意义建构,帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。[关键词]:数学实验直观教学操作基础教育课程改革,既要加强学生的基础性学力,又要提高学生的发展性学力和创造性学力,从而培养学生终身学习的愿望和能力。数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解
2、或解决问题的一种教学过程。在这过程中,教师通过提问引导和启发学生学习研究数学问题的方法。在数学实验教学中教师仍然处于主要引导的地位,而学生则处于主动学习的地位。数学实验可使学生从“听”数学的学习方式,改变成在教师的指导下“做”数学。过去被动地接收现成的数学知识,而现在象“研究者”一样去发现探索知识。实践表明,通过实验,学生对有关知识的印象比过去死记硬背要深刻得多。同时由于学生通过实验、观察、猜想、验证、归纳、表述等活动,他们不仅形成对数学新的理解,而且学习能力得到了提高。数学实验缩短了学生和数学之
3、间的距离,数学变得可爱有趣了。人们普遍认为数学之所以学,是因为数学的“抽象性”与“严谨性”,而这正是数学的优势。正由于数学的抽象性,它才能高度概括事物的本质,也才能在广泛的领域得到应用。正由于数学语言和推理的严谨,不管自然科学还是社会科学,当从定性研究进入定量研究时都要求助于数学。那么数学就非得板起严肃的面孔,使人敬而远之吗?数学就不能深入浅出,使一般人容易理解吗?现在计算机创设的数学实验似乎开辟了这样一条新新路。通过“问题情景——数学实验——课堂交流——课堂操作课堂练习”这种新的学习模式,学生可
4、以理解理解问题的来龙去脉,以及它的发现及完善过程,从感觉到理解,从意会到表述,从具体到抽象,从说明到证明。一切都是在学生眼前发生的,抽象得易于理解,严谨得合情合理。有人认为实验仅是自然科学的教学手段,这是一种误解,实验同样在数学教学中有着广阔的应用天地。因为,从广义上说,数学教育也是一种科技活动,是科技工作的一部分。正确地恰到好处地应用数学实验,也是当前素质教育中的一个重要层面。虽然,数学实验一直不被人们所重视,但随着现代教育技术,特别是多媒体软件的普及,数学实验必将遍地开花。下面本人就“数学实验
5、”在初中数学教学中谈几点自己的拙见。一、数学实验能培养学生空间感,动感,建立立体思维,培养探究能力。关于开放探索性问题,需要提供一个便于学生装探试环境,有时又需要创设富于启发性的问题情景。有了计算机情况就和传统教学大不一样了。提出同一个问题:“顺序连接四边形各边中点围成什么图形?”在计算机屏幕上显示的效果就比过去灵活的多。在“几何画板”的支持下,可以在屏幕上给出一个动态的四边形,它在运动的过程中忽而是凸四边形,忽而是凹四边形;四边中点连线组成的四边形也是不断变化的,可能是一般的平行四边形,也可能是
6、特殊的平行四边形。在这种情景下我们可以给学生更多的思考空间,因为为问题可以是非常开放的,我们可以通过设计数学实验引导学生探究怎样的条件将导致何种结论。又如正方体的截面问题,在屏幕上我们问:“设想一把无比锋的刀,猛地朝一个正方体的物体砍下去,截面是什么图形?”给学生留出猜测的时间之后,让学生装操作计算机。计算机可以用不同的速度对此动态模拟的图景,显示出不同形状的截面,并由此引发出一系列能激发学生兴趣的有关截面的问题。二、数学实验能培养学生的创新思维能力。数学理念的抽象性通常都有某种“直观”的想法为背
7、景。作为教师,就应该通过实验,把这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。让每一个学生准备一块三角形纸片,如图,过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的一部分线交于一点,这点即为三角形的内心。相似地,可以折出
8、三角形的外心、重心,进一步启发学生,还可折出三角形垂心. 又如在“用字母表示数”的教学中,提出下列问题:搭一个正方形需要4根火柴(如下图)(1)按上图的方式,搭两个正方形需要根火柴,搭三个正方形需要根火柴。(2)搭10个、100个这样的正方形需要多少根火柴?你是怎样得到的?(3)如果用x表示用火柴搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?通过学生的操作实践,探究交流,学生从多角度中去思考、去发现规律,发现如下一些结果:1、…3x+12、…4+3(x-1)3、…4x-(
此文档下载收益归作者所有