欢迎来到天天文库
浏览记录
ID:32474483
大小:692.61 KB
页数:18页
时间:2019-02-06
《山西省吕梁市泰化中学2018-2019学年高二上学期第一次月考数学---精校解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com泰化学校2018—2019学年第一学期第一次月考高二数学一、选择题(本大题共12小题,每小题5分,共60分)1.如图所示,观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③不是棱锥D.④是棱柱【答案】D【解析】【分析】利用几何体的结构特征进行分析判断,能够求出结果.【详解】图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图③是棱锥.图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱.故选:D.【点睛】本题考查几何体的结构特征
2、,解题时要认真审题,注意熟练掌握基本概念.2.下列命题中是真命题的个数是()(1)垂直于同一条直线的两条直线互相平行(2)与同一个平面夹角相等的两条直线互相平行(3)平行于同一个平面的两条直线互相平行(4)两条直线能确定一个平面(5)垂直于同一个平面的两个平面平行A.B.C.D.【答案】A-18-【解析】分析:逐一分析判断每一个命题的真假.详解:对于(1),垂直于同一条直线的两条直线可能平行,也可能异面或相交.所以是错误的.对于(2),与同一个平面夹角相等的两条直线可能互相平行,也可能相交或异面,所以是错误的.对于(3),平行于
3、同一个平面的两条直线可能互相平行,也可能异面或相交,所以是错误的.对于(4)两条直线能不一定确定一个平面,还有可能不能确定一个平面,所以是错误的.对于(5),垂直于同一个平面的两个平面不一定平行,还有可能相交,所以是错误的.故答案为:A点睛:(1)本题主要考查空间位置关系的判断,意在考查学生对该基础知识的掌握能力和空间想象能力.(2)判断空间位置关系命题的真假,可以直接证明或者举反例.3.已知直线、,平面、,给出下列命题:①若,,且,则②若,,且,则③若,,且,则④若,,且,则其中正确的命题是()A.②③B.①③C.①④D.③④
4、【答案】C【解析】分析:①可由面面垂直的判定定理进行判断;②可由面面平行的条件进行判断;③可由面面垂直的条件进行判断;④可由面面垂直的判定定理进行判断.解析:①若,,且,则,正确.,且,可得出或,又,故可得到.②若,,且,则,不正确.两个面平行与同一条线平行,两平面有可能相交.③若,,且,则,不正确.且,可得出,又,故不能得出.④若,,且,则,正确.且,可得出,又,故得出.-18-故选:C.点睛:解决空间位置关系问题的方法(1)解决空间中点、线、面位置关系的问题,首先要明确空间位置关系的定义,然后通过转化的方法,把空间中位置关系
5、的问题转化为平面问题解决.(2)解决位置关系问题时,要注意几何模型的选取,如利用正(长)方体模型来解决问题.4.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A.14斛B.22斛C.36斛D.66斛
6、【答案】B【解析】试题分析:设圆锥底面半径为r,则,所以,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.考点:圆锥的性质与圆锥的体积公式视频5.设正方体的表面积为24,一个球内切于该正方体,那么这个球的体积是()A.B.C.D.【答案】A【解析】【分析】-18-根据已知中正方体的全面积为24cm2,一个球内切于该正方体,结合正方体和圆的结构特征,求出球的半径,代入球的体积公式即可求出答案.【详解】∵正方体的全面积为24cm2,∴正方体的棱长为2cm,又∵球内切于该正方体,∴这个球的直径为2cm,则这个球的半径为1m
7、,∴球的体积V=.故选A.【点睛】本题考查的知识点是球的体积,其中根据正方体和圆的结构特征,求出球的半径,是解答本题的关键.6.在中,,,,将绕直线旋转一周,所形成的几何体的体积是()A.B.C.D.【答案】D【解析】如图,绕直线旋转一周,,则所形成的几何体是以ACD为轴截面的圆锥中挖去一个以ABD为轴截面的校园追后剩余的部分.因为,,,所以.,所以.-18-故选D.7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路
8、径的长度为()A.B.C.D.2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,
此文档下载收益归作者所有