欢迎来到天天文库
浏览记录
ID:32390419
大小:518.69 KB
页数:36页
时间:2019-02-04
《新课程高中数学教学的困惑与对策新课程高中数学教学的困惑与对策》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、新课程高中数学教学的新课程高中数学教学的困惑与对策困惑与对策201120112011年于澳门年于澳门年于澳门杨利民杨利民一、新课程高中数学教学的几个困惑一、新课程高中数学教学的几个困惑和相应对策和相应对策11、新课标教材体系的变化带来的困惑、新课标教材体系的变化带来的困惑(1)新课程标准中初中、高中知识衔接上存在脱节现象现有初高中数学知识存在以下"脱节":1.立方和与差的公式初中已删去不讲,而高中的运算还在用。2.因式分解初中一般只限于二次项且系数为"1""1"的分解,对系数不为"1"的涉及不多,而且对三次或
2、高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难
3、度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。
4、另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授.((22)知识的编排顺序让人不解)知识的编排顺序让人不解((33)知识的删减造成对传统内容的冲击)知识的删减造成对传统内容的冲击((44)与其他学科的协调没有做好)与其他学科的协调没有做好(5)(5)教学内容与习题的搭配有不合理之处教学内容与习题的搭配有不合理之处(6)(6)教材编排中有些内容设置的难度与课教材编排中有些内容设置的难度与课标要求失衡标要求失衡(7)(7)课时安排不太合理课时安排不太合理22、教师教学中易出现的问题、教师教
5、学中易出现的问题教学目标达不到教学目标达不到((11)双基目标落实不到位。)双基目标落实不到位。不重视基础知识和通性、通法,过分强不重视基础知识和通性、通法,过分强调技巧,特别是在必修部分调技巧,特别是在必修部分(2)(2)情感、态度、价值观目标出现了情感、态度、价值观目标出现了““贴标签贴标签””现象。现象。片面课程资源开发导致教学内容泛化片面课程资源开发导致教学内容泛化((11)教材地位被弱化。)教材地位被弱化。((22)为情景而设置情景。)为情景而设置情景。((33)联系实际变成了装饰。)联系实际变成了
6、装饰。((44)搜集和处理信息形式化。)搜集和处理信息形式化。教学过程和教学方式形式化教学过程和教学方式形式化((11)有合作形式而无合作实质。)有合作形式而无合作实质。对话变成问答;对话变成问答;有活动无反馈,学生练最终还原成有活动无反馈,学生练最终还原成老师讲,学生有讨论没归纳总结;老师讲,学生有讨论没归纳总结;((22)板书让位于多媒体。)板书让位于多媒体。((33)探究名不附实。)探究名不附实。33、学生学习中存在的困难、学生学习中存在的困难((11)学生原有的知识结构不完善)学生原有的知识结构不完善
7、((22)学生思维能力达不到教学内容的要求)学生思维能力达不到教学内容的要求((33)对高中老师的教学方法不适应)对高中老师的教学方法不适应二、怎样发挥新课标教材的效能,从二、怎样发挥新课标教材的效能,从根本上解决困惑根本上解决困惑11、应该了解新课标教材的变化和意图、应该了解新课标教材的变化和意图传统的知识内容分布在必修模块和选修传统的知识内容分布在必修模块和选修系列的某个模块或某个专题中,每块知识相系列的某个模块或某个专题中,每块知识相对独立对独立,,选修部分以前面必修部分为基础,知选修部分以前面必修部分
8、为基础,知识和能力要求呈现螺旋上升,层次分明;更识和能力要求呈现螺旋上升,层次分明;更多采用归纳,遵循科学发现的规律;与大纲多采用归纳,遵循科学发现的规律;与大纲版相比有些增加和删除的知识变化。版相比有些增加和删除的知识变化。以解析几何为例说明:以解析几何为例说明:必修中的必修中的““直线与园的方程直线与园的方程””从知识点的分布来看,略作微调。不从知识点的分布来看,略作微调。不再要求再要求““直线
此文档下载收益归作者所有