【5A版】高中数学课件-排列组合的应用.ppt

【5A版】高中数学课件-排列组合的应用.ppt

ID:32258565

大小:2.44 MB

页数:38页

时间:2019-02-02

【5A版】高中数学课件-排列组合的应用.ppt_第1页
【5A版】高中数学课件-排列组合的应用.ppt_第2页
【5A版】高中数学课件-排列组合的应用.ppt_第3页
【5A版】高中数学课件-排列组合的应用.ppt_第4页
【5A版】高中数学课件-排列组合的应用.ppt_第5页
资源描述:

《【5A版】高中数学课件-排列组合的应用.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、排列组合的应用三门峡市实验高中1、掌握优先处理元素(位置)法;2、掌握捆绑法;3、掌握插空法。4、隔板法4、分组分配问题:1、是否均匀;2、是否有组别。学习目标:复习引入:①什么叫做从n个不同元素中取出m个元素的一个排列?从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号表示②什么叫做从n个不同元素中取出m个元素的排列数?③排列数的两个公式是什么?

2、(n,m∈N*,m≤n)组合定义:一般地说,从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。组合数公式:组合数的两个性质:(1)(2)例1:(1)7位同学站成一排,共有多少种不同的排法?分析:问题可以看作7个元素的全排列.(2)7位同学站成两排(前3后4),共有多少种不同的排法?分析:根据分步计数原理(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?分析:可看作甲固定,其余全排列(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:将问

3、题分步第一步:甲乙站两端有种第二步:其余5名同学全排列有种答:共有2400种不同的排列方法。(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一:(特殊位置法)第一步:从其余5位同学中找2人站排头和排尾,有种;第二步:剩下的全排列,有种;答:共有2400种不同的排列方法。解法二:(特殊元素法)第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有种;第二步:其余同学全排列,有种;答:共有2400种不同的排列方法。(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法三

4、:(排除法)先全排列有种,其中甲或乙站排头有种,甲或乙站排尾的有种,甲乙分别站在排头和排尾的有种.答:共有2400种不同的排列方法。(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?优限法:对于“在”与“不在”等类似有限制条件的排列问题,常常使用“直接法”(主要为“特殊位置法”和“特殊元素法”)或者“排除法”,即优先考虑限制条件.这种方法就是优限法.【总结归纳】一般地,对于有限制条件的排列问题,有以下两种方法:⑴直接计算法排列的限制条件一般是:某些特殊位置和特殊元素.解决的办法是“特事特办”,

5、对于这些特殊位置和元素,实行优先考虑,即特殊元素预置法、特殊位置预置法.⑵间接计算法先抛开限制条件,计算出所有可能的排列数,再从中减去不合题意的排列数,特别要注意:不能遗漏,也不能重复.即排除法.搞清限制条件的真正含义,做针对性文章!例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。若三个女孩要站在一起,有多少种不同的排法?解:将三个女孩看作一人与四个男孩排队,有种排法,而三个女孩之间有种排法,所以不同的排法共有:(种)。捆绑法若三个女孩要站在一起,四个男孩也要

6、站在一起,有多少种不同的排法?不同的排法有:(种)说一说捆绑法一般适用于问题的处理。相邻例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。捆绑法:对于相邻问题,常常先将要相邻的元素捆绑在一起,视作为一个元素,与其余元素全排列,再松绑后它们之间进行全排列.这种方法就是捆绑法.若三个女孩互不相邻,有多少种不同的排法?解:先把四个男孩排成一排有种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有种方法,所以共有:(种)排法。插空法例2:七个家庭一起外出

7、旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。男生、女生相间排列,有多少种不同的排法?解:先把四个男孩排成一排有种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有种方法,所以共有:(种)排法。插空法例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。甲、乙两人的两边必须有其他人,有多少种不同的排法?解:先把其余五人排成一排有种排法,在每一排列中有四个空档(不包括两端),再把甲、乙插入空档中有种方法,所以共有:(种)排

8、法。插空法例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。插空法:对于不相邻问题,先将其余元素全排列,再将这些不相邻的元素插入空挡中,这种方法就是插空法.例3、1.将四个小球分成两组,每组两个,有多少分法?4种2、将四个小球分给两人,每人两个,有多少分法?甲甲乙乙6种3、将四个小球分成两组,一组三个,一组一个,有多少分法?4种4、将四个小球分给两人,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。