欢迎来到天天文库
浏览记录
ID:32131037
大小:2.16 MB
页数:61页
时间:2019-01-31
《关于ip骨干网络的流量矩阵估计方法分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于lP骨干网络的流量矩阵估计方法研究AbstractWiththerapiddevelopmentofInternet,thescaleofthenetworkhasbecomemoreandmorelarge,andthestructurehasbecomemoreandmorecomplex,andthenumberofIntemetusershasgrownexponentially.However,thenon-criticalbusinessinthenetworkhasalsolargelyconsumedthebandwid
2、thresourcesofnetwork,affectingtherunningofothercriticalbusiness.Thesehaveledtoitsmonitoringandmanagementincreasinglydifficult.Inordertocarryoutbetternetworkplanning,networkdesign,networkmanagement,networkmonitoring,routingconfiguration,networktrafficen#neeringandnetworksim
3、ulation,thetrafficinformationofnetworkisneededurgently.Trafficmatrix,whichisanoverviewofthewholenetwork,isacompletedescriptionoftrafficflowsanditsdistribution.Combinedwithnetworkroutinginformation,itcanalsoclearlyreflecttrafficcomponentofeachlinkinthenetwork.Itisakeyinputp
4、arameterofnetworktrafficengineeringandnetworkmanagement·However,large.scale,trafficmatrixiSdifficulttoobtainthroughdirectmeasurementmethodinthecomplexnetwork.Currently,estimatingtrafficmatrixthroughthelimitedmeasuredinformationhasbecomethemainmethod.Theproblemoftrafficmatr
5、ixestimationiSanill—posedlinearinverseproblem.Thisarticledescribesthedevelopmentprocessoftrafficmatrixestimation.Representativeofeverystagesoftrafficmatrixestimationmethodsaredescribedindetail.Weanalyzetheadvantagesanddisadvantagesofeachmethod.Theinnovativeachievementsofth
6、isarticleareinthefollowingtwoaspects.Fori11.posedcharacteristicsoftrafficmatrixestimation,weavoidthetraditionalideaofestimationalgorithm,namely,increasingtheconstraintconditionbymodelingtheorigin.destinationflowstoovercometheconstraintsofill—posedcharacteristics.Throughsta
7、tisticalanalysisinlargequantitiesoftheactualmeasuredtrafficmatrixdata,weassumpethattraffiCmatrixhasthecharacteristicofspatialself-similarity.Weproposedlinearmappingmethodbasedonspatialsimilarity.Experimentsshowthatthealgorithmcalculatesquicklyandaccurately.Complexnatureofn
8、etworktrafficmakesthecurrentresearcherstendtousemoresophisticatedandcomplexmodelfortraffi
此文档下载收益归作者所有