欢迎来到天天文库
浏览记录
ID:36468914
大小:1.79 MB
页数:54页
时间:2019-05-11
《IP网络流量监测分析研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、湖南大学硕士学位论文IP网络流量监测分析研究姓名:何俊峰申请学位级别:硕士专业:计算机应用技术指导教师:张大方;黄伟20041101IP网络漉置监测分析研究AbstractNetworktrafficisoneoftheimportantmetricsfordescribingnetworkbehaviors.Itplaysanimportantroleinnetworkdesign、servicearrangement、networkprotocolandequipmentdesignandtrafficprojectimplementation.Thispaperanalyze
2、sthecurrentresearchandcorrelativeapplicationsoftheIPnetworkmeasurenlenttechnology,completesadistributedtrafficmonitoringsystem,anddoagreatdealofexperimentsonit.Thispaperconstructsatrafficmodelfortrafficpredictionbyanalyzingexperimentsinformation.,I'hemainachievementsduringtheperiodofMasterdegr
3、eearedescribedasthef’0Ilowing:ApplicationrequirementofIPnetworkmonitorandresearchofitscurrentsituationhavebeenanalyzed.ThispaperdescribstherequirementofIPnetworkmonitortechnologyresearchanddeploymentofmonitorsystemfromtheIPnetworkprotocolpointofview.ItpointsoutthatthebehaviorsofnetworkbasedonI
4、Pnetworkmonitoringareimportantfornetworkprotocoldesign,networkcapacityplananddesign,networkmaintenanceandprovidingnetworkvalue—addedservices.ResearchanddevelopmentondistributedIPnetworktrafficmonitorandanalysissystem.Thispapertellsadetaileddistributedsystemdesignscheme.Thearchitectureofthissys
5、temisdistributedcollectionandcentralizedstoragemechanismItcandetectnetworktrafficinreal-time,andprovidenetworkservicethresholdalert、design、optimization、helpfordecision—makingthroughthepowerfulexpertanalysisandeventcorrelation.Thismakesnetworkefficient、steady、secureforIPnetworksystemandensurest
6、hekeytaskscompletedsuccessfully.Thesystemiscomposedofmonitorprobesandacontrolanalysiscenter.Thispaperfocusmoreattentionondesignandimplementationofmonitorprobes、theconstructionofprobes、softwarelayer,monitortask,deployment、taskschedule、protocolanalysisprocedure,metricstorageandsendingetc.Builtat
7、rafficmodelfortrafficprediction.Byanalyzingtheotherrelatednetworktrafficmodels,aconclusionhasbeendrawnthatnetworktraffichasSelf-SimilarcharacteristicbutitmakeNouseintrafficprediction.ThispaperachievedatrafficmodelbasedOilthetrafiledatac
此文档下载收益归作者所有