欢迎来到天天文库
浏览记录
ID:32058281
大小:3.79 MB
页数:73页
时间:2019-01-31
《基于改进pso算法的配电网无功补偿优化配置分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、万方数据ABSTRCTUnreasonabledistributionofreactivepowerwilldecreasevoltagequality,increasenetworklossesandreducepowersystemstability.Thereactivepoweroptimizationcanintegrateexistingresources,maximumincreaseeconomicbenefitofthesystemandcustomer.Sothatthestudyofthepro
2、blemofreactivepoweroptimizationhasthegreatsignificanceinthetheoryandpracticalapplication.Afterthispaperanalyzestheadvantagesanddisadvantagesoftheexistingoptimizationalgorithm;animprovedParticleswarm0ptimizationalgorithmforthemathematicalmodelcorrespondstotheact
3、ualcalculationisoptimized.Theadvantagesofsimplicityandeasyimplementationofparticleswarmalgorithmhavebeenvalidatedinscienceandengineeringfields.However,theweaknessesofparticleswarmalgorithmarethesameasotherevolutionaryalgorithm’S,suchaseasytofallintolocalminimum
4、,prematureconvergence,etc.ThereasonsofdisadVantagesofParticleSwarmOptimization(PSO)Algorithmwereanalyzed,andaChaoticSequence-CosinePSO(CS—CPSO)algorithmhasbeenproposed.Itmakestheinitialparticlestotraversetheentiresearchspacetousethepopulation-initializedofchaot
5、icsequencesinthealgorithm.Andthatincreasesthediversityofinitialpopulation.ItmakestheparticlesintheearlytohavetheabilityofstrongerglobalsearchthattheinertiaweightoftheSPSOwaschangedbecauseofcosinefunctionsnonlinearity.Alongwiththefrequencyofiterationsincreasing,
6、theinertiaweightdecreases,andthenthelocalsearchcapabilityofparticlereinforced.Theaccuracyofthealgorithmimproves.TheparticleshavestrongabilityofsociallearningatanearlystagebecausethelearningfactorwaschangedbythecosinefunctionofnonlinearsymmetriC,0therparticleswi
7、lldrawc10setotheoptimalrapidly.Particleitselflearningabilityisenhancedlatterly.Itspeedsuptheconvergenceofthealgorithm;BacterialchemotaxishasbeenintroducedintheCS—CPSOalgorithm,whichmaintainsthediversityofpopulation,andpreventstheparticlesfallintolocaloptimumina
8、certainextent.TheCS—CPSOalgorithmissimulatedandanalyzedbyfivetestfunctions,comparedwiththeoriginalparticleswarmoptimizationalgorithmandstandardparticleswarmoptimizationalgor
此文档下载收益归作者所有