欢迎来到天天文库
浏览记录
ID:31982665
大小:3.15 MB
页数:53页
时间:2019-01-30
《基于学习效应的单机调度总完工时间最小化问题-研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、万方数据AbstractABSTRACTThelearningactivitieswillhaveasignificantinfluenceonproductionprocessingiftherehasaninvolvementofhumansinschedulingenvironments.Hence,itismorereasonabletotakethelearningeffectsintoconsiderationonsomeproductionschedulingproblem.Ontheothe
2、rhand,thereleasetimes,playsanimportantroleindevelopingproductionplan,hasacloserelationshipwiththeefficiencyoftheentireproductionactivities.Forexample,jobsCanbeformabatchtobeprocessingsimultaneouslyinWaferfabrication埘t11thepresenceofunequalreleasetime.Itiss
3、ometimesadvantageoustoformanon-fullbatchduetospeciallongwaitingtime,whileinothersituationsitisabetterstrategytowaitforfuturejobarrivalsinordertoincreasethefullnessofthebatch.Therefore,ithastheoreticalandpracticalsignificancetotakebothlearningeffectandunequ
4、alreleasetimeintoconsiderationinsomeschedulingproduction.However,research、析Ⅱ1learningandreadytimesislimited.whicheitherbasedonposition-dependentorsuln—of-normal-timedependentlearningeffect.Motivatedbythis,inthispaper,asinglemachineschedulingproblem谢也actual
5、time·dependentlearningeffectandunequalreleasetimeconsiderationisinvestigatedwheretheobjectiveistominimizethetotalcompletiontime.Firstly,anonlinearintegerprogrammingmodelisformulatedforthisproblem,whichwillbeusedtoobtainthesolutionsforsmallsizeproblemsthrou
6、ghtheILOGCPsoftware.Then,twodominancerulesaredevelopedbypairwiseinterchangetechnique.Thenabranch—and-bound(B&B)algorithmincorporatingwithtwodominancepropertiesandtwolowerboundsisdevelopedtoobtainsolutionsforsmallsizeproblems.Finally,ahybridparticleswarmopt
7、imization(HPSO)algorithmcombinedwitllthedominancerules.geneticoperatorsandsimulatedannealingalgorithmisproposedsincethisproblemisNP—hard.Inordertoexamtheperformanceoftheproposedbranch·-and·-boundalgorithmandhybridparticleswarlrloptimizationalgorithm,twoexp
8、erimentsaredevelopedbasedonthejobsize.Thefirstexperimentalresultsdemonstratethattheproposedbranch—and-boundalgorithmhasabetterperformancethanCPinsmallsizeproblems.TheHPSOalgorithmsCanevenobtainoptimalsolution
此文档下载收益归作者所有