欢迎来到天天文库
浏览记录
ID:31981519
大小:9.84 MB
页数:55页
时间:2019-01-30
《基于数据挖掘技术的移动客户流失研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、硕士学位论文AbstractWiththearrivalofthe3Gandtherestructuringoftheoperator,thefiercecompetitionofthemobilecommunicationsindustryexacerbatethelossofcustomers,whichhaveadirectimpactontheoperator’Smarketshare,economicbenefitsandotherkeyindicators.Facedwithfiercemarketcompetition,retainingtheh
2、igh-valuecustomerswhohavethelosstendency,effectivelyforecastingthecustomerswhomayleavethenetworksandincliningthemarketingstrategyisanimportantresearchtopic.Thispaperstudiesthedataminingtechnologyanditsresearchonthepredictionofthelossofmobilecustomers,themainworksasfollows:(1)Itanaly
3、sesthereasonsandthecharacteristicsofthecustomerloseonthemobilecommunicationindustryandpointsoutseveralproblemsexistedonthemobilecommunicationindustry.Astothedataminingmethodadoptedonthemobilecommunicationindustry,itstudiesitandgivesitscharacteristics.(2’)Asto.thecharacteristicsofthe
4、mobilecommunicationindustry,itanalysesseveralkindsofthedataminingpredictionmodel.Itputsforwardalosepredictionmodelonthebasisoftheback.propagationneuralnetwork,conductstheexperimentalanalysisandprovestheeffectivenessofthemodel.(3)Itachievesthedataminingsystemofthecustomerloseandshows
5、thedesigndetailsofthesystemOllthebasisofthelargecustomerlosepredictionmodel.Keywords:Datamining;BPNeuralnetwork;Telecommunicationscustomermanagement;Churnprediction;CRISP-DM111目录学位论文原创性声明和学位论文版权使用授权书⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯I摘要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯⋯⋯⋯⋯⋯⋯⋯IIAbstract........⋯...⋯.............
6、........................⋯..............⋯...........⋯...........................III插图索引⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一VI附表索引⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。VII第l章引言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯81.1论文选题的背景⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..81.2论文研究的目的和意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..91.3电信业客户流失分析在国内外应用情况⋯⋯⋯⋯⋯
7、⋯⋯⋯⋯⋯⋯⋯..101.3。1电信业客户流失在国内的应用情况⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯101.3.2电信业客户流失在国外的应用情况⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯111.4数据挖掘技术在国内外电信业的研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯111.5论文主要工作和论文结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..131.5.1论文主要工作⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.131.5.2论文的结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..13第2章客户流失预测的数据挖掘方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯152.1客户流失的相关概念⋯⋯⋯⋯
8、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.15
此文档下载收益归作者所有