欢迎来到天天文库
浏览记录
ID:31977037
大小:3.82 MB
页数:61页
时间:2019-01-29
《基于粗糙集和反锐化掩模的图像增强.研究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、thresholds,givingfourdifferentregionsofbrightregion,darkregion,noiseregionandnoiselessregion.Togetherwithapproximateandequivalentrelationsinroughset,thenwecanremovethenoiseeffectivelywiththedebuggedthresholds.Latermergingthebrightanddarkregionwhichhavebeennoiseremovedwecangetanoiselessimage.Finally
2、wedecomposethenoiselessimageintodifferentlayersbywaveletanalysis.Thereisonelowfrequentapproximateimageaswellasthreehighfrequentdetailedimagesineverylayer.Thenweenhancethehighfrequentdetailedimagesbyunsharpmaskingaccordingtohumans’visionpeculiarity.Bringtheenhancementtooutlineanddetailedinformationi
3、ntoeffect.Sofarwefinishthewholeenhancingprocess.Inordertoprovetheeffectivenessandadvantageofthisnewmethoddesignedinthispaper,Wemadesubsectionsimulationandcomprehensivesimulationinthispaper.First,wemadeenhancingsimulationcomparebyroughsetandothercommonnoiseremovingmethodstoanimageonlywithnoiseintera
4、ct.Secondwemadeenhancingsimulationcomparebywaveletunsharpmaskingandotherunsharpmethodstoanimageonlyhasfuzzyproblem;ThirdwemadeacomprehensivesimulationcomparebythenewmethoddesignedinthispaperandothertraditionalmethodstoahumanbrainCTimageandbeerbottlesimagewithcracks,bothofwhichwithnoiseandfuzzyprobl
5、ems.Experimentresultsshowthatatfirstnoiseremovingeffectbyroughsetdesignedinthispaperismuchbetterthantraditionalnoiseremovemethodsnotonlyinsubjectivevisionresultbutalsoinobjectivenoisetosignalratio.Seconddetailedinformationenhancedeffectbywaveletunsharpmaskingdesignedinthispaperisalsobetterthanother
6、unsharpresults.Lastthecomprehensivesimulationresulttoimagebothwithnoiseandfuzzyproblemsshowsthatusingroughsetandwaveletunsharpmaskingdesignedherestillcanreachabetterresultthancommonenhancingwaysnotonlyinsubjectivevisionresultbutalsoinobjectivenoisetosignalratio,notonlyitcanremovenoiseeffectively,th
7、edetailedinformationandedgescouldbeimprovedalso,obtainingasatisfactionenhancingresult.KEYWORDS:imageenhancement,roughset,waveletanalysis,unsharpmaskingV基于粗糙集和反锐化掩模的图像增强研究原创性声明及关于学位论文使用授权的声明原创性声明本人郑重声明:所呈交的学
此文档下载收益归作者所有