欢迎来到天天文库
浏览记录
ID:31941043
大小:57.50 KB
页数:17页
时间:2019-01-29
《浅论几何直观在小学数学教学中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、可编辑版徐州高等师范学校毕业论文(2015届)浅谈几何直观在小学数学教学中的应用毕业生姓名xxxx毕业生学号2010165指导老师姓名朱允洲专业名称小学教育所属系科文理系论文提交时间2015年1月Word完美格式可编辑版摘要《标准》指出:“几何直观主要是指利用图形描述和分析问题.借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果.几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用.”;著名数学家徐利治先生也有过对几何直观的描述:“几何直观是借助于
2、见到的或想到的几何图形的形象关系,产生对数量关系的直接感知.”;也有学者这么描述:“几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态.”;弗赖登塔尔说:“几何直观可以告诉我们什么是重要的有趣的和容易进入的,当我们陷入问题观念方法的困扰时,几何可以拯救我们!2011年《新课标》将原来课程内容的六个核心概念增加到十个,其中“几何直观”就是其中新增的一个核心概念,几何直观在数学中,不管是做题还是教师教学都有着不可忽视的作用,本文将浅要谈谈几何直观在小学教学中的实际应用。Wo
3、rd完美格式可编辑版关键词:几何直观、数学教学、思维方式、实际应用、如何培养Word完美格式可编辑版目录一什么是几何直观......................................1二几何直观在小学教学中的体现..........................21.实物直观演示2.图形直观操作3.图形直观表示三几何直观的意义......................................31.几何直观能够培养学生的创造性思维2.几何直观能够帮助学生理解数学3.几何直观能
4、够培养学生科学的思维方式四几何直观在小学教学中的应用...........................51.在困惑中产生画图的需求,初步培养学生借助几何直观理解和分析问题的意识2.让学生经历几何直观呈现的过程,发挥几何直观在数学学习中的价值3.通过几何直观探究数学本质,帮助学生充分理解概念五如何培养小学生的几何直观能力.......................11Word完美格式可编辑版浅谈几何直观在小学数学教学中的应用一、什么是几何直观?1952年,我国首次制订的中小学数学教学大纲提出,小
5、学“算术教学应该培养和发展儿童的逻辑思维能力”,中学数学应该“发展学生生动的空间想象力,发展学生逻辑的思维力和判断力”。1963年,根据华罗庚、关肇直等专家的意见,中小学数学教学的能力培养任务修改为培养“计算能力、逻辑推理能力和空间想象力”(即传统的三大能力)。1988年,九年义务教育数学教学大纲将能力培养任务改为“培养运算能力、发展逻辑思维能力和空间观念”。2001年颁布的《全日制义务教育数学课程标准(实验稿)》提出“丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维”。2011年版课标
6、把几何直观作为十个核心概念之一,并明确指出几何直观的含义,阐明其教育价值。由我国几何课程基本要求可以看出,从空间想象能力到空间观念,再到几何直观能力,几何直观的建立和发展是一个历史演变过程。《标准》指出:“几何直观主要是指利用图形描述和分析问题.借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果.几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用.”;著名数学家徐利治先生也有过对几何直观的描述:“几何直观是借助于见到的或想到的几何图形的形象关系,
7、产生对数量关系的直接感知.”;也有学者这么描述:“几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态.”;弗赖登塔尔说:“几何直观可以告诉我们什么是重要的有趣的和容易进入的,当我们陷入问题观念方法的困扰时,几何可以拯救我们!从这些描述中,我们可以有以下的认识:◆几何直观是一种运用图形认识事物的能力,或者说是一种解决数学问题的思维方式.◆这种能力可外化为一种在解决某些数学问题时的方法,这种方法区别于其他方法的典型特征在于它是以几何图形为工具的——即“几何”两字的意义.Wo
8、rd完美格式可编辑版◆用这种方法解决问题,不是运用几何中常用的论证方法,而是通过经验、观察、想象等途径,直观地感知问题的结果或方向——即“直观”两字的意义.例如,三年级学生要学习同分子分数大小比较,这个知识相对比较抽象,学生较难理解.此时,学生如果能主动地采取画出(或想到)以下几何图形(图1)的方式,然后通过观察(或想象)图形的特点及联系,那么就能直观地解决问题,并理解“分子相同的分数,分母小的反而大”的道理.学生如果具备这种解决问题的思维方式,掌握这样的方法,我们就
此文档下载收益归作者所有